Wafer level system integration: a review

Highlights the major trends and issues affecting monolithic wafer-scale circuits and hybrid wafer-scale circuits, i.e. pretested chips mounted on silicon wafer circuit boards. An extensive set of references is provided to avoid repeating detailed discussions available in the cited literature. Instead, a broad overview of the objectives and motivations of the considerable work on wafer-level system components is provided. It is emphasized that wafer-scale integration provides a foundation on which future systems, perhaps including advanced semiconductor technologies for high-performance components, can achieve evolutionary increases in performance and decreases in system size.<<ETX>>

[1]  M.H. Woods,et al.  MOS VLSI reliability and yield trends , 1986, Proceedings of the IEEE.

[2]  A. Sinclair,et al.  200 Mb wafer memory , 1989, IEEE International Solid-State Circuits Conference, 1989 ISSCC. Digest of Technical Papers.

[3]  L. Hornak,et al.  On the feasibility of through-wafer optical interconnects for hybrid wafer-scale-integrated architectures , 1987, IEEE Transactions on Electron Devices.

[4]  J. McDonald,et al.  Integrated optical waveguides in polyimide for wafer scale integration , 1988 .

[5]  Jacob A. Abraham,et al.  Fault Tolerance Techniques for Systolic Arrays , 1987, Computer.

[6]  S.K. Tewksbury,et al.  Communication network issues and high-density interconnects in large-scale distributed computing systems , 1988, IEEE J. Sel. Areas Commun..

[7]  R.C. Aubusson,et al.  Wafer-scale integration-a fault-tolerant procedure , 1978, IEEE Journal of Solid-State Circuits.

[8]  F.J. Leonberger,et al.  Optical interconnections for VLSI systems , 1984, Proceedings of the IEEE.

[9]  Anis Husain,et al.  Optical Interconnect Of Digital Integrated Circuits And Systems , 1984, Photonics West - Lasers and Applications in Science and Engineering.

[10]  Mariagiovanna Sami,et al.  Fault Tolerance Techniques for Array Structures Used in Supercomputing , 1986, Computer.

[11]  W. Kent Fuchs,et al.  Efficient Spare Allocation for Reconfigurable Arrays , 1987 .

[12]  D.J. Silversmith,et al.  Laser microchemical techniques for reversible restructuring of gate-array prototype circuits , 1984, IEEE Electron Device Letters.

[13]  Antonio Cantoni,et al.  Metastable Behavior in Digital Systems , 1987, IEEE Design & Test of Computers.

[14]  C. H. Stapper,et al.  On yield, fault distributions, and clustering of particles , 1986 .

[15]  C.A. Neugebauer,et al.  Future trends in wafer scale integration , 1986, Proceedings of the IEEE.

[16]  Frank Thomson Leighton,et al.  Wafer-Scale Integration of Systolic Arrays , 1985, IEEE Trans. Computers.

[17]  N. Teneketges,et al.  Multichip Packaging Design for VLSI-Based Systems , 1987 .

[18]  Lawrence Snyder,et al.  Introduction to the configurable, highly parallel computer , 1982, Computer.

[19]  J.D. Meindl,et al.  Interconnection and electromigration scaling theory , 1987, IEEE Transactions on Electron Devices.

[20]  C. Huang,et al.  Silicon-On-Silicon Packaging , 1984 .

[21]  Arnold L. Rosenberg,et al.  The Diogenes Approach to Testable Fault-Tolerant Arrays of Processors , 1983, IEEE Transactions on Computers.

[22]  J. Melngailis Focused ion beam technology and applications , 1987 .

[23]  Abbas El Gamal,et al.  Configuration of VLSI Arrays in the Presence of Defects , 1984, JACM.

[24]  Graham R. Nudd,et al.  Three-dimensional VLSI architecture for image understanding , 1985, J. Parallel Distributed Comput..

[25]  L. D. Hutcheson,et al.  Directions And Development In Optical Interconnect Technology , 1986, Photonics West - Lasers and Applications in Science and Engineering.

[26]  Joseph W. Goodman,et al.  OPTICAL INTERCONNECTS: AN OVERVIEW. , 1985 .