Maximum Likelihood Method

A classical problem in the statistical decision theory is to estimate the probability distribution of a random vector X given its independent observations \(x_{1},\ldots,x_{n}\). Often it is assumed that the probability distribution comes from some family of functions parametrized by a set of parameters \(\theta _{1},\ldots,\theta _{m}\), so that in this case, the problem is reduced to estimating \(\theta _{1},\ldots,\theta _{m}\) and is called parametric estimation. However, if no specific family of distributions is assumed, i.e., the probability distribution can not be completely defined by a finite number of parameters, the problem is called nonparametric estimation.

[1]  Alan G. White,et al.  Valuing Credit Derivatives Using an Implied Copula Approach , 2006 .

[2]  W. Sharpe CAPITAL ASSET PRICES: A THEORY OF MARKET EQUILIBRIUM UNDER CONDITIONS OF RISK* , 1964 .

[3]  H. Levy Stochastic dominance and expected utility: survey and analysis , 1992 .

[4]  Wlodzimierz Ogryczak,et al.  On consistency of stochastic dominance and mean–semideviation models , 2001, Math. Program..

[5]  Stan Uryasev,et al.  Optimality conditions in portfolio analysis with general deviation measures , 2005, Math. Program..

[6]  E. Jaynes Information Theory and Statistical Mechanics , 1957 .

[7]  Stan Uryasev,et al.  Risk Tuning With Generalized Linear Regression , 2007, Math. Oper. Res..

[8]  J. Tobin Liquidity Preference as Behavior towards Risk , 1958 .

[9]  Philippe Artzner,et al.  Coherent Measures of Risk , 1999 .

[10]  R. Rockafellar,et al.  Optimization of conditional value-at risk , 2000 .

[11]  John M. Cozzolino,et al.  The Maximum-Entropy Distribution of the Future Market Price of a Stock , 1973, Oper. Res..

[12]  H. K. Kesavan,et al.  The generalized maximum entropy principle , 1989, IEEE Trans. Syst. Man Cybern..

[13]  A. Ruszczynski,et al.  Nonlinear Optimization , 2006 .

[14]  Michael Zabarankin,et al.  Stochastic Optimization of Sensor Placement for Diver Detection , 2012, Oper. Res..

[15]  Peter J. Rousseeuw,et al.  Robust regression and outlier detection , 1987 .

[16]  Roger J.-B. Wets,et al.  Statistical estimation from an optimization viewpoint , 1999, Ann. Oper. Res..

[17]  R. Rockafellar,et al.  Master Funds in Portfolio Analysis with General Deviation Measures , 2006 .

[18]  William N. Venables,et al.  Modern Applied Statistics with S-Plus. , 1996 .

[19]  William F. Sharpe,et al.  Capital Asset Prices With and Without Negative Holding , 1991 .

[20]  S. Uryasev,et al.  Drawdown Measure in Portfolio Optimization , 2003 .

[21]  Stan Uryasev,et al.  Calibrating risk preferences with the generalized capital asset pricing model based on mixed conditional value-at-risk deviation , 2012 .

[22]  Johannes O. Royset,et al.  On buffered failure probability in design and optimization of structures , 2010, Reliab. Eng. Syst. Saf..

[23]  Marlin U. Thomas Technical Note - A Generalized Maximum Entropy Principle , 1979, Oper. Res..

[24]  Wlodzimierz Ogryczak,et al.  Dual Stochastic Dominance and Related Mean-Risk Models , 2002, SIAM J. Optim..

[25]  Robert Tibshirani,et al.  The Elements of Statistical Learning: Data Mining, Inference, and Prediction, 2nd Edition , 2001, Springer Series in Statistics.

[26]  D. Tasche,et al.  On the coherence of expected shortfall , 2001, cond-mat/0104295.

[27]  A. Roy Safety first and the holding of assetts , 1952 .

[28]  A. Kreinin,et al.  Portfolio credit-risk optimization. , 2012 .

[29]  David J. Crisp,et al.  A Geometric Interpretation of v-SVM Classifiers , 1999, NIPS.

[30]  J. Jensen Sur les fonctions convexes et les inégalités entre les valeurs moyennes , 1906 .

[31]  Stan Uryasev,et al.  Capital Asset Pricing Model (CAPM) with drawdown measure , 2014, Eur. J. Oper. Res..

[32]  R. Rockafellar,et al.  Deviation Measures in Risk Analysis and Optimization , 2002 .

[33]  PETER J. ROUSSEEUW,et al.  Computing LTS Regression for Large Data Sets , 2005, Data Mining and Knowledge Discovery.

[34]  Miguel A. Lejeune,et al.  An Exact Solution Approach for Portfolio Optimization Problems Under Stochastic and Integer Constraints , 2009, Oper. Res..

[35]  C. Vignat,et al.  Some results concerning maximum Renyi entropy distributions , 2005, math/0507400.

[36]  Stan Uryasev,et al.  Generalized deviations in risk analysis , 2004, Finance Stochastics.

[37]  S. Uryasev,et al.  Portfolio Optimization with Drawdown Constraints , 2000 .

[38]  M. Zabarankin,et al.  Convex functional analysis , 2005 .

[39]  William N. Venables,et al.  Modern Applied Statistics with S , 2010 .

[40]  Bogdan Grechuk,et al.  Inverse portfolio problem with mean-deviation model , 2014, Eur. J. Oper. Res..

[41]  James J. Buckley,et al.  Entropy Principles in Decision Making Under Risk , 1985 .

[42]  Michael Zabarankin,et al.  Equilibrium With Investors Using a Diversity of Deviation Measures , 2005 .

[43]  Bogdan Grechuk,et al.  CHEBYSHEV INEQUALITIES WITH LAW-INVARIANT DEVIATION MEASURES , 2009, Probability in the Engineering and Informational Sciences.

[44]  R. Tyrrell Rockafellar,et al.  Coherent Approaches to Risk in Optimization Under Uncertainty , 2007 .

[45]  Bogdan Grechuk,et al.  Maximum Entropy Principle with General Deviation Measures , 2009, Math. Oper. Res..

[46]  A. Röell Risk Aversion in Quiggin and Yaari's Rank-Order Model of Choice under Uncertainty , 1987 .

[47]  C. Acerbi Spectral measures of risk: A coherent representation of subjective risk aversion , 2002 .

[48]  Bernhard Schölkopf,et al.  New Support Vector Algorithms , 2000, Neural Computation.

[49]  M. Yaari The Dual Theory of Choice under Risk , 1987 .

[50]  J. Mercer Functions of Positive and Negative Type, and their Connection with the Theory of Integral Equations , 1909 .

[51]  Alfred O. Hero,et al.  On Solutions to Multivariate Maximum alpha-Entropy Problems , 2003, EMMCVPR.

[52]  R. Rockafellar,et al.  Conditional Value-at-Risk for General Loss Distributions , 2001 .

[53]  Chih-Jen Lin,et al.  Training v-Support Vector Classifiers: Theory and Algorithms , 2001, Neural Computation.

[54]  Peter J. Rousseeuw,et al.  Robust Regression and Outlier Detection , 2005, Wiley Series in Probability and Statistics.

[55]  Stan Uryasev,et al.  Value-at-risk support vector machine: stability to outliers , 2013, Journal of Combinatorial Optimization.

[56]  Harry M. Markowitz,et al.  Foundations of Portfolio Theory , 1991 .

[57]  Akiko Takeda,et al.  ν-support vector machine as conditional value-at-risk minimization , 2008, ICML '08.

[58]  Corinna Cortes,et al.  Support-Vector Networks , 1995, Machine Learning.