The norm of a discretized gradient in H ( div ) ∗ for a posteriori finite element error analysis

This paper characterizes the norm of the residual of mixed schemes in their natural functional frameworkwithfluxes or stresses inH(div) anddisplacements in L2. Under some natural conditions on an associated Fortin interpolation operator, reliable and efficient error estimates are introduced that circumvent the duality technique and so do not suffer from reduced elliptic regularity for non-convex domains. For the Laplace, Stokes, andLamé equations, this generalizes known estimators to non-convex domains and introduces new a posteriori error estimators. Dedicated to Professor Volker Mehrmann on the occasion of his 60th birthday. The authors gratefully acknowledge support by the Deutsche Forschungsgemeinschaft in the Priority Program 1748 “Reliable simulation techniques in solid mechanics. Development of non-standard discretization methods, mechanical and mathematical analysis” under the projects “Foundation and application of generalized mixed FEM towards nonlinear problems in solid mechanics”, “Adaptive isogeometric modeling of propagating strong discontinuities in heterogeneous materials” and “High-order immersed-boundary methods in solid mechanics for structures generated by additive processes”. B Daniel Peterseim peterseim@ins.uni-bonn.de Carsten Carstensen cc@math.hu-berlin.de Andreas Schröder andreas.schroeder@sbg.ac.at 1 Institut für Mathematik, Humboldt Universität zu Berlin, Unter den Linden 6, 10099 Berlin, Germany 2 Institut für Numerische Simulation, Universität Bonn, Wegelerstr. 6, 53115 Bonn, Germany 3 Fachbereich Mathematik, Universität Salzburg, Hellbrunnerstr. 34, 5020 Salzburg, Austria

[1]  Alan Demlow,et al.  A Posteriori Error Estimates for Finite Element Exterior Calculus: The de Rham Complex , 2012, Foundations of Computational Mathematics.

[2]  Carsten Carstensen,et al.  A posteriori error estimates for mixed FEM in elasticity , 1998, Numerische Mathematik.

[3]  D. Braess Finite Elements: Finite Elements , 2007 .

[4]  Ping Wang,et al.  Least-Squares Methods for Incompressible Newtonian Fluid Flow: Linear Stationary Problems , 2004, SIAM J. Numer. Anal..

[5]  L. R. Scott,et al.  The Mathematical Theory of Finite Element Methods , 1994 .

[6]  G. Gatica,et al.  Analysis of a velocity–pressure–pseudostress formulation for the stationary Stokes equations ☆ , 2010 .

[7]  Douglas N. Arnold,et al.  Mixed finite elements for elasticity , 2002, Numerische Mathematik.

[8]  Joachim Schöberl,et al.  A posteriori error estimates for Maxwell equations , 2007, Math. Comput..

[9]  C. Bahriawati,et al.  Three Matlab Implementations of the Lowest-order Raviart-Thomas Mfem with a Posteriori Error Control , 2005 .

[10]  R. Stenberg A family of mixed finite elements for the elasticity problem , 1988 .

[11]  Carsten Carstensen,et al.  A posteriori error estimate for the mixed finite element method , 1997, Math. Comput..

[12]  Carsten Carstensen,et al.  A unifying theory of a posteriori finite element error control , 2005, Numerische Mathematik.

[13]  Dongho Kim,et al.  A Priori and A Posteriori Pseudostress-velocity Mixed Finite Element Error Analysis for the Stokes Problem , 2011, SIAM J. Numer. Anal..

[14]  J. Zolésio,et al.  Springer series in Computational Mathematics , 1992 .

[15]  J. Douglas,et al.  PEERS: A new mixed finite element for plane elasticity , 1984 .

[16]  Thomas A. Manteuffel,et al.  LOCAL ERROR ESTIMATES AND ADAPTIVE REFINEMENT FOR FIRST-ORDER SYSTEM LEAST SQUARES (FOSLS) , 1997 .

[17]  G. Gatica,et al.  A residual-based a posteriori error estimator for a fully-mixed formulation of the Stokes–Darcy coupled problem , 2011 .

[18]  A. Alonso Error estimators for a mixed method , 1996 .

[19]  Gail W. Pieper Applied Mathematical Sciences Research at Argonne, April 1, 1982-March 31, 1983 , 1981 .

[20]  Jun Hu,et al.  A unifying theory of a posteriori error control for nonconforming finite element methods , 2007, Numerische Mathematik.