Linear rankwidth meets stability

Classes with bounded rankwidth are MSO-transductions of trees and classes with bounded linear rankwidth are MSO-transductions of paths. These results show a strong link between the properties of these graph classes considered from the point of view of structural graph theory and from the point of view of finite model theory. We take both views on classes with bounded linear rankwidth and prove structural and model theoretic properties of these classes: 1) Graphs with linear rankwidth at most $r$ are linearly \mbox{$\chi$-bounded}. Actually, they have bounded $c$-chromatic number, meaning that they can be colored with $f(r)$ colors, each color inducing a cograph. 2) Based on a Ramsey-like argument, we prove for every proper hereditary family $\mathcal F$ of graphs (like cographs) that there is a class with bounded rankwidth that does not have the property that graphs in it can be colored by a bounded number of colors, each inducing a subgraph in~$\mathcal F$. 3) For a class $\mathcal C$ with bounded linear rankwidth the following conditions are equivalent: a) $\mathcal C$~is~stable, b)~$\mathcal C$~excludes some half-graph as a semi-induced subgraph, c) $\mathcal C$ is a first-order transduction of a class with bounded pathwidth. These results open the perspective to study classes admitting low linear rankwidth covers.

[1]  Anand Pillay,et al.  Introduction to stability theory , 1983, Oxford logic guides.

[2]  Bruce A. Reed,et al.  Excluding any graph as a minor allows a low tree-width 2-coloring , 2004, J. Comb. Theory, Ser. B.

[3]  Egon Wanke,et al.  The Tree-Width of Clique-Width Bounded Graphs Without Kn, n , 2000, WG.

[4]  Hans Adler,et al.  Interpreting nowhere dense graph classes as a classical notion of model theory , 2014, Eur. J. Comb..

[5]  Jaroslav Nesetril,et al.  On nowhere dense graphs , 2011, Eur. J. Comb..

[6]  Paul D. Seymour,et al.  Graph Minors. II. Algorithmic Aspects of Tree-Width , 1986, J. Algorithms.

[7]  P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .

[8]  André Raspaud,et al.  Good and Semi-Strong Colorings of Oriented Planar Graphs , 1994, Inf. Process. Lett..

[9]  B. Mohar,et al.  Graph Minors , 2009 .

[10]  B. Poizat,et al.  A Course in Model Theory: An Introduction to Contemporary Mathematical Logic , 2000 .

[11]  Stephan Kreutzer,et al.  Polynomial Kernels and Wideness Properties of Nowhere Dense Graph Classes , 2016, SODA.

[12]  Jaroslav Nesetril,et al.  Sparsity - Graphs, Structures, and Algorithms , 2012, Algorithms and combinatorics.

[13]  BENJAMIN OYE,et al.  STABLE GRAPHS , 2017 .

[14]  Michal Pilipczuk,et al.  On the number of types in sparse graphs , 2017, LICS.

[15]  Danna Zhou,et al.  d. , 1934, Microbial pathogenesis.

[16]  Stephan Kreutzer,et al.  First-Order Interpretations of Bounded Expansion Classes , 2018, ICALP.

[17]  W. Hodges CLASSIFICATION THEORY AND THE NUMBER OF NON‐ISOMORPHIC MODELS , 1980 .

[18]  Éric Sopena The chromatic number of oriented graphs , 1997, J. Graph Theory.

[19]  Stephan Kreutzer,et al.  Deciding first-order properties of nowhere dense graphs , 2013, STOC.

[20]  Dennis P. Geller,et al.  The chromatic number and other functions of the lexicographic product , 1975 .

[21]  Chen C. Chang,et al.  Model Theory: Third Edition (Dover Books On Mathematics) By C.C. Chang;H. Jerome Keisler;Mathematics , 1966 .

[22]  Daniel Král,et al.  Classes of graphs with small rank decompositions are X-bounded , 2011, Eur. J. Comb..

[23]  Marthe Bonamy,et al.  Graphs of bounded cliquewidth are polynomially $\chi$-bounded , 2019 .

[24]  Stephan Kreutzer,et al.  Neighborhood complexity and kernelization for nowhere dense classes of graphs , 2016, ICALP.

[25]  Paul D. Seymour,et al.  Approximating clique-width and branch-width , 2006, J. Comb. Theory, Ser. B.

[26]  Bruno Courcelle,et al.  The Monadic Second-Order Logic of Graphs VII: Graphs as Relational Structures , 1992, Theor. Comput. Sci..

[27]  Paul Seymour,et al.  A survey of $\chi$-boundedness , 2018, 1812.07500.

[28]  Jeong Han Kim,et al.  The Ramsey Number R(3, t) Has Order of Magnitude t2/log t , 1995, Random Struct. Algorithms.

[29]  Stephan Kreutzer,et al.  Methods for Algorithmic Meta Theorems , 2009, AMS-ASL Joint Special Session.

[30]  S. Shelah,et al.  Regularity lemmas for stable graphs , 2011, 1102.3904.

[31]  Saharon Shelah,et al.  Second-order quantifiers and the complexity of theories , 1985, Notre Dame J. Formal Log..

[32]  Paul D. Seymour,et al.  Graph minors. I. Excluding a forest , 1983, J. Comb. Theory, Ser. B.

[33]  M. Ziegler,et al.  A Course in Model Theory , 2012 .

[34]  Marthe Bonamy,et al.  Graphs of bounded cliquewidth are polynomially χ-bounded , 2020, ArXiv.

[35]  Thomas Colcombet,et al.  A Combinatorial Theorem for Trees , 2007, ICALP.

[36]  Bruno Courcelle,et al.  Handle-Rewriting Hypergraph Grammars , 1993, J. Comput. Syst. Sci..

[37]  Bruno Courcelle,et al.  Graph Structure and Monadic Second-Order Logic - A Language-Theoretic Approach , 2012, Encyclopedia of mathematics and its applications.

[38]  Robert Ganian,et al.  When Trees Grow Low: Shrubs and Fast MSO1 , 2012, International Symposium on Mathematical Foundations of Computer Science.

[39]  O-joung Kwon,et al.  Graphs of Small Rank-width are Pivot-minors of Graphs of Small Tree-width , 2012, Discret. Appl. Math..

[40]  Michal Pilipczuk,et al.  On low rank-width colorings , 2017, WG.

[41]  Jaroslav Nesetril,et al.  Grad and classes with bounded expansion I. Decompositions , 2008, Eur. J. Comb..

[42]  A. Gyárfás Problems from the world surrounding perfect graphs , 1987 .

[43]  Michal Pilipczuk,et al.  Progressive Algorithms for Domination and Independence , 2018, STACS.

[44]  Alex Scott,et al.  A survey of χ ‐boundedness , 2020, J. Graph Theory.

[45]  Jaroslav Nesetril,et al.  Partitions of graphs into cographs , 2010, Discret. Math..

[46]  Vadim V. Lozin,et al.  Minimal Classes of Graphs of Unbounded Clique-width and Well-quasi-ordering , 2015, ArXiv.

[47]  Jaroslav Nesetril,et al.  Tree-depth, subgraph coloring and homomorphism bounds , 2006, Eur. J. Comb..