Automatic detection and classification of EEG artifacts using fuzzy kernel SVM and wavelet ICA (WICA)

[1]  F. La Foresta,et al.  Automatic Artifact Rejection From Multichannel Scalp EEG by Wavelet ICA , 2012, IEEE Sensors Journal.

[2]  Pierre J. M. Cluitmans,et al.  Clinical evaluation of a method for automatic detection and removal of artifacts in auditory evoked potential monitoring , 1995, Journal of Clinical Monitoring.

[3]  R. Quiroga,et al.  Stationarity of the EEG series , 1995 .

[4]  A. Devipriya,et al.  A Novel Method of Segmentation and Classification for Meditation in Health Care Systems , 2018, Journal of Medical Systems.

[5]  A. Belousov,et al.  A flexible classification approach with optimal generalisation performance: support vector machines , 2002 .

[6]  Chih-Jen Lin,et al.  LIBSVM: A library for support vector machines , 2011, TIST.

[7]  J. C. Woestenburg,et al.  The removal of the eye-movement artifact from the EEG by regression analysis in the frequency domain , 1983, Biological Psychology.

[8]  K. Janschek,et al.  Multi-resolution dyadic wavelet denoising approach for extraction of visual evoked potentials in the brain , 2004 .

[9]  Francesco Carlo Morabito,et al.  Wavelet-ICA methodology for efficient artifact removal from Electroencephalographic recordings , 2007, 2007 International Joint Conference on Neural Networks.

[10]  T. Sejnowski,et al.  Removing electroencephalographic artifacts by blind source separation. , 2000, Psychophysiology.

[11]  Saeid Sanei,et al.  Artifact removal from electroencephalograms using a hybrid BSS-SVM algorithm , 2005, IEEE Signal Processing Letters.

[12]  K H Ting,et al.  Automatic correction of artifact from single-trial event-related potentials by blind source separation using second order statistics only. , 2006, Medical engineering & physics.

[13]  Ángel Navia-Vázquez,et al.  Automatic removal of ocular artefacts using adaptive filtering and independent component analysis for electroencephalogram data , 2012, IET Signal Process..

[14]  J R Ives,et al.  Clinical applications of spectral analysis and extraction of features from electroencephalograms with slow waves in adult patients. , 1973, Electroencephalography and clinical neurophysiology.

[15]  V. A. Makarov,et al.  Recovering EEG brain signals: Artifact suppression with wavelet enhanced independent component analysis , 2006, Journal of Neuroscience Methods.

[16]  Mahmoud I. Al-Kadi,et al.  Effectiveness of Wavelet Denoising on Electroencephalogram Signals , 2013 .

[17]  Terrence J. Sejnowski,et al.  Enhanced detection of artifacts in EEG data using higher-order statistics and independent component analysis , 2007, NeuroImage.

[18]  Arnaud Delorme,et al.  EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis , 2004, Journal of Neuroscience Methods.

[19]  C. Vasseur,et al.  A global approach for automatic artifact removal for standard EEG record , 2006, 2006 International Conference of the IEEE Engineering in Medicine and Biology Society.

[20]  Yanda Li,et al.  Automatic removal of the eye blink artifact from EEG using an ICA-based template matching approach , 2006, Physiological measurement.

[21]  Reza Boostani,et al.  Entropy and complexity measures for EEG signal classification of schizophrenic and control participants , 2009, Artif. Intell. Medicine.

[22]  Bashir I. Morshed,et al.  Unsupervised Eye Blink Artifact Denoising of EEG Data with Modified Multiscale Sample Entropy, Kurtosis, and Wavelet-ICA , 2015, IEEE Journal of Biomedical and Health Informatics.