Optical forces in heat-assisted magnetic recording head-disk interface.

[1]  D. Bogy,et al.  Experimental study of smear formation and removal in heat-assisted magnetic recording , 2022, Tribology International.

[2]  E. Schreck,et al.  Opto-Thermal Simulation of Metallic Smear’s Impact on Hamr Technology , 2021, 2021 IEEE 32nd Magnetic Recording Conference (TMRC).

[3]  S. Xiong,et al.  Experimental Study of Material Pick Up on Heat-Assisted Magnetic Recording (HAMR) Heads , 2021, Tribology Letters.

[4]  H. P. Urbach,et al.  Plasmonic tweezers: for nanoscale optical trapping and beyond , 2021, Light, science & applications.

[5]  S. Koganezawa,et al.  Investigation of mechanism of smear formation from diamond-like carbon films on heating , 2020, Microsystem Technologies.

[6]  D. Bogy,et al.  Viscoelastic Lubricant Deformation and Disk-to-Head Transfer During Heat-Assisted Magnetic Recording , 2019, IEEE Transactions on Magnetics.

[7]  D. Bogy,et al.  Effect of Rheology and Slip on Lubricant Deformation and Disk-to-Head Transfer During Heat-Assisted Magnetic Recording (HAMR) , 2018, Tribology Letters.

[8]  J. Hoehn,et al.  Materials challenges for the heat-assisted magnetic recording head–disk interface , 2018 .

[9]  S. Xiong,et al.  Material Transfer Inside Head Disk Interface for Heat Assisted Magnetic Recording , 2017, Tribology Letters.

[10]  Xuan Zheng,et al.  HAMR Thermal Gradient Measurements and Analysis , 2017, IEEE Transactions on Magnetics.

[11]  P. C. Fletcher,et al.  Write-Induced Head Contamination in Heat-Assisted Magnetic Recording , 2017, IEEE Transactions on Magnetics.

[12]  Z. Cen,et al.  HAMR Media Design in Optical and Thermal Aspects , 2012, IEEE Transactions on Magnetics.

[13]  Harukazu Miyamoto,et al.  Integrated head design using a nanobeak antenna for thermally assisted magnetic recording. , 2012, Optics express.

[14]  C. Ambrosch-Draxl,et al.  Optical Constants and Inelastic Electron-Scattering Data for 17 Elemental Metals , 2009 .

[15]  M. Fatih Erden,et al.  Heat Assisted Magnetic Recording , 2008, Proceedings of the IEEE.

[16]  Giovanni Volpe,et al.  Surface plasmon optical tweezers: tunable optical manipulation in the femtonewton range. , 2008, Physical review letters.

[17]  S. Maier Plasmonics: Fundamentals and Applications , 2007 .

[18]  J. Torczynski,et al.  A Generalized Approximation for the Thermophoretic Force on a Free-Molecular Particle , 2004 .

[19]  J. Torczynski,et al.  DSMC simulations of the thermophoretic force on a spherical macroscopic particle , 2001 .

[20]  Toshimitsu Asakura,et al.  Radiation forces on a dielectric sphere in the Rayleigh scattering regime , 1996 .

[21]  Michael Vollmer,et al.  Optical properties of metal clusters , 1995 .

[22]  R. W. Christy,et al.  Optical constants of transition metals: Ti, V, Cr, Mn, Fe, Co, Ni, and Pd , 1974 .

[23]  A. Ashkin Acceleration and trapping of particles by radiation pressure , 1970 .

[24]  P. S. Epstein,et al.  On the Resistance Experienced by Spheres in their Motion through Gases , 1924 .

[25]  R. Gans,et al.  Über die Form ultramikroskopischer Goldteilchen , 1912 .