Finding a partner in the ocean: molecular and evolutionary bases of the response to sexual cues in a planktonic diatom

Summary Microalgae play a major role as primary producers in aquatic ecosystems. Cell signalling regulates their interactions with the environment and other organisms, yet this process in phytoplankton is poorly defined. Using the marine planktonic diatom Pseudo‐nitzschia multistriata, we investigated the cell response to cues released during sexual reproduction, an event that demands strong regulatory mechanisms and impacts on population dynamics. We sequenced the genome of P. multistriata and performed phylogenomic and transcriptomic analyses, which allowed the definition of gene gains and losses, horizontal gene transfers, conservation and evolutionary rate of sex‐related genes. We also identified a small number of conserved noncoding elements. Sexual reproduction impacted on cell cycle progression and induced an asymmetric response of the opposite mating types. G protein‐coupled receptors and cyclic guanosine monophosphate (cGMP) are implicated in the response to sexual cues, which overall entails a modulation of cell cycle, meiosis‐related and nutrient transporter genes, suggesting a fine control of nutrient uptake even under nutrient‐replete conditions. The controllable life cycle and the genome sequence of P. multistriata allow the reconstruction of changes occurring in diatoms in a key phase of their life cycle, providing hints on the evolution and putative function of their genes and empowering studies on sexual reproduction.

[1]  Vincent Moulton,et al.  Evolutionary genomics of the cold-adapted diatom Fragilariopsis cylindrus , 2017, Nature.

[2]  A. Amato,et al.  The sexual phase of the diatom Pseudo-nitzschia multistriata: cytological and time-lapse cinematography characterization , 2016, Protoplasma.

[3]  M. Montresor,et al.  Sex in marine planktonic diatoms: insights and challenges , 2016 .

[4]  J. Thorner,et al.  Heterotrimeric G Protein-coupled Receptor Signaling in Yeast Mating Pheromone Response* , 2016, The Journal of Biological Chemistry.

[5]  L. Clement,et al.  A sex-inducing pheromone triggers cell cycle arrest and mate attraction in the diatom Seminavis robusta , 2016, Scientific Reports.

[6]  W. Vyverman,et al.  Identification of the meiotic toolkit in diatoms and exploration of meiosis-specific SPO11 and RAD51 homologs in the sexual species Pseudo-nitzschia multistriata and Seminavis robusta , 2015, BMC Genomics.

[7]  Brian T. Lee,et al.  The UCSC Genome Browser database: 2015 update , 2014, Nucleic Acids Res..

[8]  R. Sanges,et al.  Transcriptome sequencing of three Pseudo-nitzschia species reveals comparable gene sets and the presence of Nitric Oxide Synthase genes in diatoms , 2015, Scientific Reports.

[9]  Marco Salvemini,et al.  Annocript: a flexible pipeline for the annotation of transcriptomes able to identify putative long noncoding RNAs , 2015, Bioinform..

[10]  J. Schmutz,et al.  Updating algal evolutionary relationships through plastid genome sequencing: did alveolate plastids emerge through endosymbiosis of an ochrophyte? , 2015, Scientific Reports.

[11]  J. Qi,et al.  Saccharina genomes provide novel insight into kelp biology , 2015, Nature Communications.

[12]  M. Russo,et al.  Establishment of Genetic Transformation in the Sexually Reproducing Diatoms Pseudo-nitzschia multistriata and Pseudo-nitzschia arenysensis and Inheritance of the Transgene , 2015, Marine Biotechnology.

[13]  Daniel Mapleson,et al.  RAMPART: a workflow management system for de novo genome assembly , 2015, Bioinform..

[14]  W. Fujibuchi,et al.  Oil Accumulation by the Oleaginous Diatom Fistulifera solaris as Revealed by the Genome and Transcriptome , 2015, Plant Cell.

[15]  D. Iudicone,et al.  The dynamics of sexual phase in the marine diatom Pseudo‐nitzschia multistriata (Bacillariophyceae) , 2014, Journal of phycology.

[16]  A. Quinlan BEDTools: The Swiss‐Army Tool for Genome Feature Analysis , 2014, Current protocols in bioinformatics.

[17]  W. Vyverman,et al.  Pheromone signaling during sexual reproduction in algae. , 2014, The Plant journal : for cell and molecular biology.

[18]  W. Vyverman,et al.  Molecular regulation of the diatom cell cycle. , 2014, Journal of experimental botany.

[19]  Björn Usadel,et al.  Trimmomatic: a flexible trimmer for Illumina sequence data , 2014, Bioinform..

[20]  Ole Kristian Ekseth,et al.  orthAgogue: an agile tool for the rapid prediction of orthology relations , 2014, Bioinform..

[21]  R. Sanges,et al.  Selection and validation of reference genes for qPCR analysis in the pennate diatoms Pseudo-nitzschia multistriata and P. arenysensis , 2014 .

[22]  David J. Arenillas,et al.  JASPAR 2014: an extensively expanded and updated open-access database of transcription factor binding profiles , 2013, Nucleic Acids Res..

[23]  G. Pohnert,et al.  A co-culturing/metabolomics approach to investigate chemically mediated interactions of planktonic organisms reveals influence of bacteria on diatom metabolism , 2013, Metabolomics.

[24]  Jesse A. Port,et al.  Identification of G protein-coupled receptor signaling pathway proteins in marine diatoms using comparative genomics , 2013, BMC Genomics.

[25]  Pieter Vanormelingen,et al.  An Inordinate Fondness? The Number, Distributions, and Origins of Diatom Species , 2013, The Journal of eukaryotic microbiology.

[26]  Alan M. Moses,et al.  An atlas of over 90,000 conserved noncoding sequences provides insight into crucifer regulatory regions , 2013, Nature Genetics.

[27]  Gordon Gremme,et al.  GenomeTools: A Comprehensive Software Library for Efficient Processing of Structured Genome Annotations , 2013, IEEE/ACM Transactions on Computational Biology and Bioinformatics.

[28]  E. Birney,et al.  Highly conserved elements discovered in vertebrates are present in non-syntenic loci of tunicates, act as enhancers and can be transcribed during development , 2013, Nucleic acids research.

[29]  K. Katoh,et al.  MAFFT Multiple Sequence Alignment Software Version 7: Improvements in Performance and Usability , 2013, Molecular biology and evolution.

[30]  D. Inzé,et al.  Metabolomics enables the structure elucidation of a diatom sex pheromone. , 2013, Angewandte Chemie.

[31]  Ulrich C. Klostermeier,et al.  Genome and low-iron response of an oceanic diatom adapted to chronic iron limitation , 2012, Genome Biology.

[32]  E. Yang,et al.  Supermatrix data highlight the phylogenetic relationships of photosynthetic stramenopiles. , 2012, Protist.

[33]  S. Bates,et al.  Pseudo-nitzschia physiological ecology, phylogeny, toxicity, monitoring and impacts on ecosystem health , 2012 .

[34]  D. Mann,et al.  Novel Sex Cells and Evidence for Sex Pheromones in Diatoms , 2011, PloS one.

[35]  C. Neuvéglise,et al.  Transposable elements in yeasts. , 2011, Comptes rendus biologies.

[36]  Ramón Doallo,et al.  ProtTest 3: fast selection of best-fit models of protein evolution , 2011, Bioinform..

[37]  C. Gobler,et al.  Niche of harmful alga Aureococcus anophagefferens revealed through ecogenomics , 2011, Proceedings of the National Academy of Sciences.

[38]  T. Flutre,et al.  Considering Transposable Element Diversification in De Novo Annotation Approaches , 2011, PloS one.

[39]  A. Gnirke,et al.  High-quality draft assemblies of mammalian genomes from massively parallel sequence data , 2010, Proceedings of the National Academy of Sciences.

[40]  Bernard Henrissat,et al.  Genome sequence of the necrotrophic plant pathogen Pythium ultimum reveals original pathogenicity mechanisms and effector repertoire , 2010, Genome Biology.

[41]  Corinne Da Silva,et al.  The Ectocarpus genome and the independent evolution of multicellularity in brown algae , 2010, Nature.

[42]  E. Koonin The origin and early evolution of eukaryotes in the light of phylogenomics , 2010, Genome Biology.

[43]  Jun Yu,et al.  KaKs_Calculator 2.0: A Toolkit Incorporating Gamma-Series Methods and Sliding Window Strategies , 2010, Genom. Proteom. Bioinform..

[44]  C. Bowler,et al.  Potential impact of stress activated retrotransposons on genome evolution in a marine diatom , 2009, BMC Genomics.

[45]  Mark D. Robinson,et al.  edgeR: a Bioconductor package for differential expression analysis of digital gene expression data , 2009, Bioinform..

[46]  Y. Peer,et al.  Unravelling cis-Regulatory Elements in the Genome of the Smallest Photosynthetic Eukaryote: Phylogenetic Footprinting in Ostreococcus , 2009, Journal of Molecular Evolution.

[47]  Toni Gabaldón,et al.  trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses , 2009, Bioinform..

[48]  E. Virginia Armbrust,et al.  The life of diatoms in the world's oceans , 2009, Nature.

[49]  Cyrus Chothia,et al.  SUPERFAMILY—sophisticated comparative genomics, data mining, visualization and phylogeny , 2008, Nucleic Acids Res..

[50]  Leszek Rychlewski,et al.  The Phaeodactylum genome reveals the evolutionary history of diatom genomes , 2008, Nature.

[51]  J. Bennetzen,et al.  The Physcomitrella Genome Reveals Evolutionary Insights into the Conquest of Land by Plants , 2008, Science.

[52]  Debashish Bhattacharya,et al.  Horizontal gene transfer in chromalveolates , 2007, BMC Evolutionary Biology.

[53]  Keith Bradnam,et al.  CEGMA: a pipeline to accurately annotate core genes in eukaryotic genomes , 2007, Bioinform..

[54]  Klaudia Walter,et al.  Parallel evolution of conserved non-coding elements that target a common set of developmental regulatory genes from worms to humans , 2007, Genome Biology.

[55]  Alexandros Stamatakis,et al.  RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models , 2006, Bioinform..

[56]  Burkhard Morgenstern,et al.  Gene prediction in eukaryotes with a generalized hidden Markov model that uses hints from external sources , 2006, BMC Bioinformatics.

[57]  J. Bennetzen,et al.  Transposable elements, gene creation and genome rearrangement in flowering plants. , 2005, Current opinion in genetics & development.

[58]  Casey M. Bergman,et al.  Combined Evidence Annotation of Transposable Elements in Genome Sequences , 2005, PLoS Comput. Biol..

[59]  Ewan Birney,et al.  Automated generation of heuristics for biological sequence comparison , 2005, BMC Bioinformatics.

[60]  Klaudia Walter,et al.  Highly Conserved Non-Coding Sequences Are Associated with Vertebrate Development , 2004, PLoS biology.

[61]  Nicholas H. Putnam,et al.  The Genome of the Diatom Thalassiosira Pseudonana: Ecology, Evolution, and Metabolism , 2004, Science.

[62]  D. Haussler,et al.  Aligning multiple genomic sequences with the threaded blockset aligner. , 2004, Genome research.

[63]  A. Bashir,et al.  Conserved noncoding sequences in the grasses. , 2003, Genome research.

[64]  W. Swanson,et al.  Reproductive Protein Evolution , 2002 .

[65]  S. Perkins,et al.  A MOLECULAR PHYLOGENY OF MALARIAL PARASITES RECOVERED FROM CYTOCHROME b GENE SEQUENCES , 2002, The Journal of parasitology.

[66]  Anton J. Enright,et al.  An efficient algorithm for large-scale detection of protein families. , 2002, Nucleic acids research.

[67]  H. C. Robinson,et al.  Cathepsin D cleaves aggrecan at unique sites within the interglobular domain and chondroitin sulfate attachment regions that are also cleaved when cartilage is maintained at acid pH. , 2001, Matrix biology : journal of the International Society for Matrix Biology.

[68]  Ziheng Yang,et al.  Statistical methods for detecting molecular adaptation , 2000, Trends in Ecology & Evolution.

[69]  S. Garcia-Vallvé,et al.  Horizontal gene transfer in bacterial and archaeal complete genomes. , 2000, Genome research.

[70]  Ned S. Wingreen,et al.  Protease helps yeast find mating partners , 1998, Nature.

[71]  M. Kimura A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences , 1980, Journal of Molecular Evolution.

[72]  J. Pringle,et al.  Transient G1 arrest of S. cerevisiae cells of mating type alpha by a factor produced by cells of mating type a. , 1974, Experimental cell research.

[73]  Ari Löytynoja,et al.  Phylogeny-aware alignment with PRANK. , 2014, Methods in molecular biology.

[74]  Thomas R. Gingeras,et al.  STAR: ultrafast universal RNA-seq aligner , 2013, Bioinform..

[75]  T. Alioto,et al.  Gene prediction. , 2012, Methods in molecular biology.

[76]  C. Bowler,et al.  Oceanographic and biogeochemical insights from diatom genomes. , 2010, Annual review of marine science.

[77]  A. Amato,et al.  Sexual and vegetative phases in the planktonic diatom Pseudo-nitzschia multistriata. , 2009 .

[78]  A. Knoll,et al.  An Introduction to Primary Producers in the Sea: Who They Are, What They Do, and When They Evolved , 2007 .

[79]  D. Mann,et al.  The origin and evolution of the diatoms: their adaptation to a planktonic existence , 2007 .

[80]  Paul G. Falkowski,et al.  Evolution of primary producers in the sea , 2007 .

[81]  W. Swanson,et al.  Evolution of reproductive proteins from animals and plants. , 2006, Reproduction.

[82]  Joakim Nivre AN EFFICIENT ALGORITHM , 2003 .

[83]  Sean R. Eddy,et al.  Multiple Alignment Using Hidden Markov Models , 1995, ISMB.

[84]  R. Guillard,et al.  Culture of Phytoplankton for Feeding Marine Invertebrates , 1975 .