Thermal thickness and evolution of Precambrian lithosphere: A global study

The thermal thickness of Precambrian lithosphere is modeled and compared with estimates from seismic tomography and xenolith data. We use the steady state thermal conductivity equation with the same geothermal constraints for all of the Precambrian cratons (except Antarctica) to calculate the temperature distribution in the stable continental lithosphere. The modeling is based on the global compilation of heat flow data by Pollack et al. [1993] and more recent data. The depth distribution of heat-producing elements is estimated using regional models for ∼300 blocks with sizes varying from 1°×1° to about 5°×5° in latitude and longitude and is constrained by laboratory, seismic and petrologic data and, where applicable, empirical heat flow/heat production relationships. Maps of the lateral temperature distribution at depths 50, 100, and 150 km are presented for all continents except Antarctica. The thermal thickness of the lithosphere is calculated assuming a conductive layer overlying the mantle with an adiabat of 1300°C. The Archean and early Proterozoic lithosphere is found to have two typical thicknesses, 200–220 km and 300–350 km. In general, thin (∼220 km) roots are found for Archean and early Proterozoic cratons in the Southern Hemisphere (South Africa, Western Australia, South America, and India) and thicker (>300 km) roots are found in the Northern Hemisphere (Baltic Shield, Siberian Platform, West Africa, and possibly the Canadian Shield). We find that the thickness of continental lithosphere generally decreases with age from >200 km beneath Archean cratons to intermediate values of 200±50 km in early Proterozoic lithosphere, to about 140±50 km in middle and late Proterozoic cratons. Using known crustal thickness, our calculated geotherms, and assuming that isostatic balance is achieved at the base of the lithosphere, we find that Archean and early Proterozoic mantle lithosphere is 1.5% less dense (chemically depleted) than the underlying asthenosphere, while middle and late Proterozoic subcrustal lithosphere should be depleted by ∼0.6–0.7%. Our results suggest three contrasting stages of lithosphere formation at the following ages: >2.5 Ga, 2.5–1.8 Ga, and <1.8 Ga. Ages of komatiites, greenstone belts, and giant dike swarms broadly define similar stages and apparently reflect secular changes in mantle temperature and, possibly, convection patterns.

[1]  D. L. Anderson Theory of Earth , 2014 .

[2]  Ulrich R. Christensen,et al.  Dynamic Earth: Plates, Plumes and Mantle Convection , 2000 .

[3]  L. Ovchinnikov,et al.  A heat generation model for continental crust based on deep drilling in the Baltic Shield , 1989 .

[4]  N. Rogers,et al.  Continental mantle lithosphere, and shallow level enrichment processes in the Earth's mantle , 1990 .

[5]  K. Heier,et al.  Heat Flow—Heat Generation Studies in Norway , 1974 .

[6]  Ji-yang Wang Geothermics in China , 1996 .

[7]  M. Menzies,et al.  Palaeozoic and Cenozoic lithoprobes and the loss of >120 km of Archaean lithosphere, Sino-Korean craton, China , 1993, Geological Society, London, Special Publications.

[8]  M. Gupta Is the Indian Shield hotter than other Gondwana shields , 1993 .

[9]  M. O'hara Is there an Icelandic mantle plume? , 1975, Nature.

[10]  A. Jessop,et al.  Heat flow, heat generation and crustal temperature in the kapuskasing area of the Canadian Shield☆ , 1971 .

[11]  C. Jaupart Horizontal heat transfer due to radioactivity contrasts: causes and consequences of the linear heat flow relation , 1983 .

[12]  K. Condie Plate Tectonics and Crustal Evolution , 1977 .

[13]  Siegfried Siegesmund,et al.  A test of the relationship between seismic velocity and heat production for crustal rocks , 1989 .

[14]  J. Ferguson Kimberlite and kimberlitic intrusives of southeastern Australia , 1980, Mineralogical Magazine.

[15]  D. Chapman,et al.  Continental Heat-Flow Density , 1988 .

[16]  W. Griffin,et al.  Garnet geotherms: Pressure-temperature data from Cr-pyrope garnet xenocrysts in volcanic rocks , 1996 .

[17]  S. Grand Mantle shear structure beneath the Americas and surrounding oceans , 1994 .

[18]  M. Gupta,et al.  Geothermal studies in the Hyderabad granitic region and the crustal thermal structure of the Southern Indian Shield , 1987 .

[19]  Ladislaus Rybach,et al.  The variation of heat generation, density and seismic velocity with rock type in the continental lithosphere☆ , 1984 .

[20]  H. Pollack,et al.  Terrestrial heat flow in the Brazilian highlands , 1980 .

[21]  R. Hilst,et al.  The deep structure of the Australian continent from surface wave tomography , 1999 .

[22]  K. Fuchs,et al.  The relationship between seismic velocity, mineral composition and temperature and pressure in the upper mantle—with an application to the Kenya Rift and its eastern flank , 1994 .

[23]  B. Goleby,et al.  Structure and evolution of the Australian continent , 1998 .

[24]  D. Blackwell,et al.  Heat flow patterns of the North American continent: A discussion of the DNAG Geothermal Map of North America , 1990 .

[25]  W. Griffin,et al.  Trace elements in garnets and chromites: Diamond formation in the Siberian lithosphere , 1993 .

[26]  H. Pollack,et al.  Terrestrial heat flow in Botswana and Namibia , 1987 .

[27]  H. Nataf,et al.  3SMAC: an a priori tomographic model of the upper mantle based on geophysical modeling , 1996 .

[28]  L. Bodri,et al.  Three-dimensional deep temperature modelling along the European geotraverse , 1995 .

[29]  I. Kukkonen Terrestrial heat flow and radiogenic heat production in Finland, the central Baltic Shield , 1989 .

[30]  B. Kjarsgaard,et al.  Kimberlite-derived ultramafic xenoliths from the diamond stability field: a new Cretaceous geotherm for Somerset Island, Northwest Territories , 1992 .

[31]  D. Nelson Granite-greenstone crust formation on the Archaean Earth: a consequence of two superimposed processes , 1998 .

[32]  Hendrik Jan van Heijst,et al.  Measuring surface-wave overtone phase velocities using a mode-branch stripping technique , 1997 .

[33]  Vladimír Čermák,et al.  Two-dimensional temperature modelling along five East-European geotraverses , 1986 .

[34]  O. Pandey,et al.  Super-mobility of hot Indian lithosphere , 1986 .

[35]  J. Sass,et al.  Heat flow from the Liberian Precambrian Shield , 1980 .

[36]  M. Gupta,et al.  Heat flow and heat generation in the Archaean Dharwar cratons and implications for the Southern Indian Shield geotherm and lithospheric thickness , 1991 .

[37]  S. Lacroix,et al.  An Archean fold-thrust belt in the northwestern Abitibi Greenstone Belt: structural and seismic evidence , 1995 .

[38]  H. Martin The mechanisms of petrogenesis of the Archaean continental crust—Comparison with modern processes , 1993 .

[39]  W. Griffin,et al.  Geothermal profile and crust-mantle transition beneath east-central Queensland: Volcanology, xenolith petrology and seismic data , 1987 .

[40]  C. Jaupart,et al.  New heat flow density and radiogenic heat production data in the Canadian Shield and the Quebec Appalachians , 1989 .

[41]  E. Decker Thermal regimes of the Southern Rocky Mountains and Wyoming Basin in Colorado and Wyoming in the United States , 1995 .

[42]  B. Kennett,et al.  Upper Mantle Structure Beneath Australia from Portable Array Deployments , 1998 .

[43]  D. Fountain Is there a relationship between seismic velocity and heat production for crustal rocks , 1986 .

[44]  H. Pollack,et al.  On the regional variation of heat flow, geotherms, and lithospheric thickness☆ , 1977 .

[45]  R. J. Hart,et al.  The Vredefort radioelement profile extended to supracrustal strata at Carletonville, with implications for continental heat flow , 1981 .

[46]  A. Lachenbruch,et al.  Continental extension, magmatism and elevation; formal relations and rules of thumb , 1990 .

[47]  N. Balling HEAT FLOW AND THERMAL STRUCTURE OF THE LITHOSPHERE ACROSS THE BALTIC SHIELD AND NORTHERN TORNQUIST ZONE , 1995 .

[48]  Gabi Laske,et al.  CRUST 5.1: A global crustal model at 5° × 5° , 1998 .

[49]  S. Taylor,et al.  Heat Flow and the Chemical Composition of Continental Crust , 1996, The Journal of Geology.

[50]  G. H. Schärmeli Identification of Radiative Thermal Conductivity of Olivine up to 25 Kbar and 1500 K , 1979 .

[51]  G. Nolet,et al.  Upper mantle S velocity structure of North America , 1997 .

[52]  P. E. van Keken,et al.  Cooling of the earth in the Archaean: Consequences of pressure-release melting in a hotter mantle , 1994 .

[53]  H. Pollack,et al.  Diversion of heat by Archean cratons: a model for southern Africa , 1987 .

[54]  C. Herzberg GENERATION OF PLUME MAGMAS THROUGH TIME : AN EXPERIMENTAL PERSPECTIVE , 1995 .

[55]  C. Jaupart,et al.  The heat flow through oceanic and continental crust and the heat loss of the Earth , 1980 .

[56]  C. Jaupart,et al.  The vertical distribution of radiogenic heat production in the Precambrian crust of Norway and Sweden: Geothermal implications , 1987 .

[57]  S. Taylor The continental crust , 1985 .

[58]  P. Morgan Crustal radiogenic heat production and the selective survival of ancient continental crust , 1985 .

[59]  A. Berg,et al.  Early formation and long-term stability of continents resulting from decompression melting in a convecting mantle , 2000 .

[60]  K. Furlong,et al.  Heat production and thermal conductivity of rocks from the Pikwitonei–Sachigo continental cross section, central Manitoba: implications for the thermal structure of Archean crust , 1987 .

[61]  S. Singh,et al.  Heat flow in the Bastar Craton, central Indian Shield: implications for thermal characteristics of Proterozoic cratons , 1993 .

[62]  V. Cermak,et al.  Deep temperature distribution along three profiles crossing the Teisseyre-Tornquist tectonic zone in Poland , 1989 .

[63]  K. Condie Episodic ages of Greenstones: A key to mantle dynamics? , 1995 .

[64]  J. Russell,et al.  A steady state conductive geotherm for the north central Slave, Canada: Inversion of petrological data from the Jericho Kimberlite pipe , 1999 .

[65]  S. J. Carpenter,et al.  Large igneous provinces and giant dike swarms; proxies for supercontinent cyclicity and mantle convection , 1998 .

[66]  L. Guillou,et al.  Heat flow, gravity and structure of the Abitibi belt, Superior Province, Canada: Implications for mantle heat flow , 1994 .

[67]  Suzanne Hurter,et al.  Heat flow from the Earth's interior: Analysis of the global data set , 1993 .

[68]  M. Jones Heat flow and heat production in the Namaqua Mobile Belt, South Africa , 1987 .

[69]  A. Jessop,et al.  A Comparison of the Thermal Characters of Shields , 1975 .

[70]  U. Seipold Depth dependence of thermal transport properties for typical crustal rocks , 1992 .

[71]  A. Beck Climatically perturbed temperature gradients and their effect on regional and continental heat-flow means , 1977 .

[72]  S. Kelley,et al.  Heat production in an Archean crustal profile and implications for heat flow and mobilization of heat-producing elements , 1987 .

[73]  L. Nicolaysen,et al.  Radioelement concentrations in the deep profile through Precambrian basement of the Vredefort structure , 1981 .

[74]  R. Rudnick,et al.  Geochemistry of Intermediate/- to High-Pressure Granulites , 1990 .

[75]  W. McDonough,et al.  Thermal structure, thickness and composition of continental lithosphere , 1998 .

[76]  M. Jones Heat flow anomaly in Lesotho: Implications for the southern boundary of the Kaapvaal Craton , 1992 .

[77]  A. Jessop,et al.  Geothermal model of the continental margins of eastern Canada , 1989 .

[78]  J. C. Jaeger Heat flow and radioactivity in Australia , 1970 .

[79]  U. Christensen,et al.  Mantle convection and stability of depleted and undepleted continental lithosphere , 1997 .

[80]  K. Condie EPISODIC CONTINENTAL GROWTH AND SUPERCONTINENTS : A MANTLE AVALANCHE CONNECTION? , 1998 .

[81]  H. Pollack,et al.  Heat flow and heat production in Zambia: Evidence for lithospheric thinning in central Africa , 1977 .

[82]  Layered Mantle Lithosphere in the Lac de Gras Area, Slave Craton: Composition, Structure and Origin , 1999 .

[83]  M. Drury Heat flow and heat generation in the Churchill Province of the Canadian Shield, and their palaeotectonic significance☆ , 1985 .

[84]  W. Griffin,et al.  Xenolith geotherms and crustal models in Eastern Australia , 1991 .

[85]  N. Arndt Chapter 1 Archean Komatiites , 1994 .

[86]  J. Rogers,et al.  Radioactivity, Heat Flow, and Rifting of the Indian Continental Crust , 1987, The Journal of Geology.

[87]  I. Kukkonen,et al.  Xenolith-controlled geotherm for the central Fennoscandian Shield: implications for lithosphere–asthenosphere relations , 1999 .

[88]  W. Griffin,et al.  A xenolith-derived geotherm for southeastern australia and its geophysical implications , 1985 .

[89]  J. Strebeck,et al.  Old continental geotherms: constraints on heat production and thickness of continental plates , 1982 .

[90]  Rickard N. Lundin,et al.  The Freja satellite mission , 1993 .

[91]  D. Jones,et al.  Terrestrial heat flow in east and southern Africa , 1990 .

[92]  C. Jaupart,et al.  Heat flow and structure of the lithosphere in the Eastern Canadian Shield , 1991 .

[93]  Gene Simmons,et al.  Thermal conductivity of Earth materials at high temperatures , 1972 .

[94]  T. Jordan Lateral heterogeneity and mantle dynamics , 1975, Nature.

[95]  V. Hamza Thermal structure of south american continental lithosphere during archaean and proterozoic , 1982 .

[96]  R. Rudnick,et al.  Nature and composition of the continental crust: A lower crustal perspective , 1995 .

[97]  M. Jones Heat flow in the Witwatersrand Basin and environs and its significance for the South African Shield Geotherm and lithosphere thickness , 1988 .

[98]  Benren Zhang,et al.  Chemical composition of the continental crust as revealed by studies in East China , 1998 .

[99]  R. Ketcham Distribution of heat‐producing elements in the upper and middle crust of southern and west central Arizona: Evidence from the core complexes , 1996 .

[100]  P. Silver,et al.  Dynamic topography, plate driving forces and the African superswell , 1998, Nature.

[101]  Jeroen Tromp,et al.  Measurements and global models of surface wave propagation , 1997 .

[102]  F. R. Boyd,et al.  Diamonds and the African Lithosphere , 1986, Science.

[103]  A. Lachenbruch Crustal temperature and heat production: Implications of the linear heat‐flow relation , 1970 .

[104]  Alan M. Jessop,et al.  The thermal nature of the Canadian Appalachian crust , 1987 .

[105]  S. S. Schmidberger,et al.  Nature of the mantle roots beneath the North American craton: mantle xenolith evidence from Somerset Island kimberlites , 1999 .

[106]  J. Sass,et al.  Heat flow and near-surface radioactivity in the Australian continental crust , 1976 .

[107]  B. Weaver,et al.  Empirical approach to estimating the composition of the continental crust , 1984, Nature.

[108]  C. Jaupart,et al.  The thermal structure and thickness of continental roots , 1999 .

[109]  H. Pollack,et al.  ‘Cold spot’ in West Africa: anchoring the African plate , 1974, Nature.

[110]  J. Ritsema,et al.  New seismic model of the upper mantle beneath Africa , 2000 .

[111]  P. H. Nixon,et al.  Stabilisation of Archaean lithospheric mantle: a Re-Os isotope study of peridotite xenoliths from th , 1995 .

[112]  D. L. Anderson,et al.  Depth extent of cratons as inferred from tomographic studies , 1995 .

[113]  Walter H. F. Smith,et al.  Flat to steep transition in subduction style , 1994 .

[114]  S. H. Richardson,et al.  Three generations of diamonds from old continental mantle , 1993, Nature.

[115]  M. McNutt Flexure reveals great depth , 1990, Nature.

[116]  L. Guillou-Frottier,et al.  Heat flow variations in the Grenville Province, Canada , 1995 .

[117]  O. Pandey,et al.  Large variation of Curie depth and lithospheric thickness beneath the Indian subcontinent and a case for magnetothermometry , 1987 .

[118]  S. H. Richardson,et al.  Evidence for a 150–200-km thick Archaean lithosphere from diamond inclusion thermobarometry , 1985, Nature.

[119]  V. Pasquale,et al.  Deep temperatures and lithospheric thickness along the European Geotraverse , 1990 .

[120]  Anatoli L. Levshin,et al.  Eurasian surface wave tomography: Group velocities , 1998 .

[121]  F. Rolandone,et al.  Heat flow in the Trans‐Hudson Orogen of the Canadian Shield: Implications for Proterozoic continental growth , 1999 .

[122]  S. Hurter,et al.  Terrestrial heat flow in the Paraná Basin, southern Brazil , 1996 .

[123]  S. Taylor,et al.  The continental crust: Its composition and evolution , 1985 .

[124]  H. Martin Chapter 6 The Archean Grey Gneisses and the Genesis of Continental Crust , 1994 .

[125]  Walter D. Mooney,et al.  Seismic velocity structure and composition of the continental crust: A global view , 1995 .

[126]  T. Jordan Structure and Formation of the Continental Tectosphere , 1988 .

[127]  L. Guillou-Frottier,et al.  Heat flow and thickness of the lithosphere in the Canadian Shield , 1998 .

[128]  A. Nyblade Heat flow and the structure of Precambrian lithosphere , 1999 .

[129]  F. Rolandone,et al.  Low mantle heat flow at the edge of the North American Continent, Voisey Bay, Labrador , 2000 .

[130]  H. Pollack,et al.  Modern and ancient geotherms beneath southern Africa , 1988 .

[131]  G. Kennedy,et al.  The equilibrium boundary between graphite and diamond , 1976 .

[132]  N. Ryde Thermal state and composition of the lithospheric mantle beneath the Daldyn kimberlite field, Yakutia , 1996 .

[133]  J. Dawson,et al.  The Nature of the lower continental crust , 1986 .

[134]  T. Murase,et al.  The use of laboratory velocity data for estimating temperature and partial melt fraction in the low‐velocity zone: Comparison with heat flow and electrical conductivity studies , 1989 .

[135]  F. R. Boyd,et al.  Densities of fertile and sterile garnet peridotites , 1976 .

[136]  D. L. Anderson,et al.  Partial melting in the upper mantle , 1970 .

[137]  A. M. Goodwin Principles of Precambrian Geology , 1996 .

[138]  K. Condie Episodic continental growth models: Afterthoughts and extensions , 2000 .

[139]  V. Pasquale,et al.  Lithospheric thermal structure in the Baltic shield , 1991 .

[140]  Michael Denis Higgins,et al.  Composition of the Canadian Precambrian shield and the continental crust of the earth , 1986, Geological Society, London, Special Publications.

[141]  D. L. Anderson Superplumes or supercontinents , 1994 .

[142]  R. Clowes,et al.  Lithoprobe leads to new perspectives on continental evolution , 1998 .

[143]  X. Pichon,et al.  Uplift of Tibet: from eclogites to granulites — implications for the Andean Plateau and the Variscan belt , 1997 .

[144]  H. Pollack Cratonization and thermal evolution of the mantle , 1986 .

[145]  H. Pollack,et al.  A global analysis of heat flow from Precambrian terrains: Implications for the thermal structure of Archean and Proterozoic lithosphere , 1993 .

[146]  L. Guillou-Frottier,et al.  High heat flow in the trans‐Hudson Orogen, Central Canadian Shield , 1996 .

[147]  J. Mareschal Downward continuation of heat flow density data and thermal regime in Eastern Canada , 1991 .

[148]  R. Singh,et al.  High Moho temperature in the Indian shield , 1982 .

[149]  L. Rybach,et al.  Temperature field modelling along the Northern Segment of the European Geotraverse and the Danish Transition Zone , 1991 .

[150]  M. Drury,et al.  Some new measurements of heat flow in the Superior Province of the Canadian Shield , 1987 .

[151]  F. R. Boyd Compositional distinction between oceanic and cratonic lithosphere , 1989 .

[152]  G. Davies,et al.  Dynamic Earth: Interior , 1999 .

[153]  D. Blackwell,et al.  Heat generation of plutonic rocks and continental heat flow provinces , 1968 .

[154]  C. Jaupart,et al.  The thermal structure and thickness of continental roots , 1999 .

[155]  A. Nyblade Heat flow across the East African Plateau , 1997 .

[156]  Toshiro Tanimoto,et al.  High-resolution global upper mantle structure and plate tectonics , 1993 .

[157]  A. Jõeleht,et al.  Thermal properties of granulite facies rocks in the Precambrian basement of Finland and Estonia , 1998 .

[158]  V. D. L. Cruz,et al.  Seismic wave propagation in inhomogeneous and anisotropic porous media , 2001 .

[159]  Jean-Claude Mareschal,et al.  Heat flow and deep thermal structure near the southeastern edge of the Canadian Shield , 2000 .

[160]  P. England,et al.  Heat refraction and heat production in and around granite plutons in north-east England , 1980 .

[161]  A. Jessop,et al.  Heat flow and heat generation in the superior province of the canadian shield , 1978 .

[162]  W. Mooney,et al.  Evolution of the Precambrian lithosphere: Seismological and geochemical constraints , 1994 .

[163]  R. Rao,et al.  Radioactive heat generation and heat flow in the Indian shield , 1976 .

[164]  D. Pearson The age of continental roots , 1999 .

[165]  J. Russell,et al.  Petrology of Peridotite and Pyroxenite Xenoliths from the Jericho Kimberlite: Implications for the Thermal State of the Mantle beneath the Slave Craton, Northern Canada , 1999 .

[166]  Cin-Ty A. Lee,et al.  Re-Os systematics of mantle xenoliths from the East African Rift: age, structure, and history of the Tanzanian craton , 1999 .