Learnings from the use of fiber optics in GRAVITY

The use of optical fibers in astronomical instrumentation has been becoming more and more common. High transmission, polarization control, compact and easy routing are just a few of the advantages in this respect. But fibers also bring new challenges for the development of systems. During the assembly of the VLTI beam combiner GRAVITY different side effects of the fiber implementation had to be taken into account. In this work we summarize the corresponding phenomena ranging from the external factors influencing the fiber performance, like mechanical and temperature effects, to inelastic scattering within the fiber material.

[1]  K. S. Krishnan,et al.  A New Type of Secondary Radiation , 1928, Nature.

[2]  Magdalena Anna Lippa Interferometry in astronomy , 2018 .

[3]  Eine neue Erscheinung bei der Lichtzerstreuung in Krystallen , 2005, Naturwissenschaften.

[4]  A. Kaminskiĭ,et al.  Crystalline Lasers: Physical Processes and Operating Schemes , 1996 .

[5]  E. Wieprecht,et al.  GRAVITY: metrology , 2012, Other Conferences.

[6]  M. Monerie,et al.  Raman amplification in fluoride glass fibres , 1985 .

[7]  Frank Eisenhauer,et al.  The metrology system of the VLTI instrument GRAVITY , 2016, Astronomical Telescopes + Instrumentation.

[8]  Adolf Smekal,et al.  Zur Quantentheorie der Dispersion , 1923, Naturwissenschaften.

[9]  A. Delboulbé,et al.  Single-mode waveguides for GRAVITY , 2018, Astronomy & Astrophysics.

[10]  D. Simpson,et al.  Spectroscopy of thulium doped silica glass , 2008 .

[11]  Takenobu Suzuki,et al.  Raman transient response and enhanced soliton self-frequency shift in ZBLAN fiber , 2012 .

[12]  L. Videau,et al.  Signal Propagation Over Polarization-Maintaining Fibers: Problem and Solutions , 2006, Journal of Lightwave Technology.

[13]  J. Stark,et al.  Beobachtungen ber den Effekt des elektrischen Feldes auf Spektrallinien. I. Quereffekt , 1914 .

[14]  Y S Wang,et al.  Enhanced 2.0 microm emission and gain coefficient of transparent glass ceramic containing BaF2: Ho3+,Tm3+ nanocrystals. , 2009, Optics express.

[15]  Frank Eisenhauer,et al.  GRAVITY: the impact of non-common optical paths within the metrology system , 2014, Astronomical Telescopes and Instrumentation.

[16]  C. Raman A new radiation , 1953 .

[17]  S. Huber,et al.  The GRAVITY metrology system: modeling a metrology in optical fibers , 2014, Astronomical Telescopes and Instrumentation.

[18]  G. Maze,et al.  Diffusion Raman dans une fibre optique en verre fluoré , 1985 .

[19]  Ole Bang,et al.  Supercontinuum generation in ZBLAN fibers—detailed comparison between measurement and simulation , 2012 .

[20]  S. Rabien,et al.  First light for GRAVITY: Phase referencing optical interferometry for the Very Large Telescope Interferometer , 2017, 1705.02345.

[21]  P. Koopmann,et al.  2 µm Laser Sources and Their Possible Applications , 2010 .

[22]  Réal Vallée,et al.  Fluoride glass Raman fiber laser at 2185 nm. , 2011, Optics letters.

[23]  Robert W. Boyd Chapter 9 – Stimulated Raman Scattering and Stimulated Rayleigh-Wing Scattering , 1992 .

[24]  Christophe Dupuy,et al.  Sub-electron read noise and millisecond full-frame readout with the near infrared eAPD array SAPHIRA , 2016, Astronomical Telescopes + Instrumentation.

[25]  K. Okamoto,et al.  Polarization-maintaining fibers and their applications , 1986 .