Explicit solutions from eigenfunction symmetry of the Korteweg-de Vries equation.
暂无分享,去创建一个
Sen-Yue Lou | Xiao-Rui Hu | Yong Chen | S. Lou | Yong Chen | Xiaorui Hu
[1] S. Lou,et al. Non-local symmetries via Darboux transformations , 1997 .
[2] Benno Fuchssteiner,et al. Application of hereditary symmetries to nonlinear evolution equations , 1979 .
[3] Tal Carmon,et al. Observation of discrete solitons in optically induced real time waveguide arrays. , 2003, Physical review letters.
[4] S. Lou. Conformal invariance and integrable models , 1997 .
[5] Composite band-gap solitons in nonlinear optically induced lattices. , 2003, Physical review letters.
[6] B. Fuchssteiner. The Lie Algebra Structure of Nonlinear Evolution Equations Admitting Infinite Dimensional Abelian Symmetry Groups , 1981 .
[7] C. Gu,et al. Soliton theory and its applications , 1995 .
[8] S. Lou. Integrable models constructed from the symmetries of the modified KdV equation , 1993 .
[9] H. Umemura,et al. Solutions of the second and fourth Painlevé equations, I , 1997, Nagoya Mathematical Journal.
[10] H. Shin. The dark soliton on a cnoidal wave background , 2004, nlin/0410065.
[11] S. Lou. A (2+1)-dimensional extension for the sine-Gordon equation , 1993 .
[12] Xiaorui Hu,et al. Nonlocal symmetries related to Bäcklund transformation and their applications , 2012, 1201.3409.
[13] Mordechai Segev,et al. Discrete solitons in photorefractive optically induced photonic lattices. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.
[14] Mark J. Ablowitz,et al. Solitons and the Inverse Scattering Transform , 1981 .
[15] H. Shin. Soliton on a cnoidal wave background in the coupled nonlinear Schrödinger equation , 2003, nlin/0312052.
[16] A. Vinogradov,et al. Nonlocal symmetries and the theory of coverings: An addendum to A. M. vinogradov's ‘local symmetries and conservation laws” , 1984 .
[17] S. Lou. Symmetries and lie algebras of the Harry Dym hierarchy , 1994 .
[18] Yuri S. Kivshar,et al. Dynamics of Solitons in Nearly Integrable Systems , 1989 .
[19] Demetrios N. Christodoulides,et al. Observation of two-dimensional discrete solitons in optically induced nonlinear photonic lattices , 2003, Nature.
[20] S. Lou,et al. Inverse recursion operator of the AKNS hierarchy , 1993 .
[21] A. Jamiołkowski. Book reviewApplications of Lie groups to differential equations : Peter J. Olver (School of Mathematics, University of Minnesota, Minneapolis, U.S.A): Graduate Texts in Mathematics, Springer-Verlag, New York, Berlin, Heidelberg, Tokyo, 1986, XXVI+497pp. , 1989 .
[22] Shin Hj,et al. Multisoliton complexes moving on a cnoidal wave background. , 2005 .
[23] G. Bluman,et al. Symmetries and differential equations , 1989 .
[24] V. Matveev,et al. Darboux Transformations and Solitons , 1992 .
[25] S. Lou,et al. Symmetries of the KdV equation and four hierarchies of the integrodifferential KdV equations , 1994 .
[26] Sen-Yue Lou,et al. New symmetries of the Jaulent-Miodek hierarchy , 1993 .
[27] Wieslaw Krolikowski,et al. Spatial solitons in optically induced gratings. , 2003, Optics letters.
[28] L. Debnath. Solitons and the Inverse Scattering Transform , 2012 .
[29] F Galas,et al. New nonlocal symmetries with pseudopotentials , 1992 .
[30] M. Wadati,et al. Relationships among Inverse Method, Bäcklund Transformation and an Infinite Number of Conservation Laws , 1975 .