A direct charger transfer from interface to surface for the highly efficient spatial separation of electrons and holes: The construction of Ti–C bonded interfaces in TiO2-C composite as a touchstone for photocatalytic water splitting

[1]  Shaopeng Li,et al.  Direct Observation of Charge Separation on Anatase TiO2 Crystals with Selectively Etched {001} Facets. , 2016, Journal of the American Chemical Society.

[2]  Limin Wang,et al.  Integration of Multiple Plasmonic and Co-Catalyst Nanostructures on TiO2 Nanosheets for Visible-Near-Infrared Photocatalytic Hydrogen Evolution. , 2016, Small.

[3]  Hongwei Lu,et al.  Constructing Anatase TiO2 Nanosheets with Exposed (001) Facets/Layered MoS2 Two-Dimensional Nanojunctions for Enhanced Solar Hydrogen Generation , 2016 .

[4]  Yi Luo,et al.  Oxyhydroxide Nanosheets with Highly Efficient Electron-Hole Pair Separation for Hydrogen Evolution. , 2016, Angewandte Chemie.

[5]  Zhengxiao Guo,et al.  Visible-light driven heterojunction photocatalysts for water splitting – a critical review , 2015 .

[6]  Landong Li,et al.  Sub-10 nm rutile titanium dioxide nanoparticles for efficient visible-light-driven photocatalytic hydrogen production , 2015, Nature Communications.

[7]  Jianshe Liu,et al.  Semiconductor heterojunction photocatalysts: design, construction, and photocatalytic performances. , 2014, Chemical Society reviews.

[8]  E. Alarousu,et al.  Ultrafast carrier trapping of a metal-doped titanium dioxide semiconductor revealed by femtosecond transient absorption spectroscopy. , 2014, ACS applied materials & interfaces.

[9]  F. Gao,et al.  Mesoporous microspheres composed of carbon-coated TiO2 nanocrystals with exposed {0 0 1} facets for improved visible light photocatalytic activity , 2014 .

[10]  X. Yao,et al.  Preparation of nitrogen-doped TiO₂/graphene nanohybrids and application as counter electrode for dye-sensitized solar cells. , 2014, ACS applied materials & interfaces.

[11]  Rui Zhang,et al.  Enhanced photocatalytic activity of TiO2-C hybrid aerogels for methylene blue degradation , 2013, Scientific Reports.

[12]  C. Xie,et al.  Enhanced Photocatalytic Activity of Chemically Bonded TiO2/Graphene Composites Based on the Effective Interfacial Charge Transfer through the C–Ti Bond , 2013 .

[13]  Yujin Chen,et al.  Topotactic conversion route to ultrafine crystalline TiO2 nanotubes with optimizable electrochemical performance , 2013 .

[14]  S. Yin,et al.  Photocatalytic Properties of Nd and C Codoped TiO2 with the Whole Range of Visible Light Absorption , 2013 .

[15]  W. Choy,et al.  Al-TiO₂ composite-modified single-layer graphene as an efficient transparent cathode for organic solar cells. , 2013, ACS nano.

[16]  W. Hou,et al.  Fe and Ni co-doped TiO2 nanoparticles prepared by alcohol-thermal method: Application in hydrogen evolution by water splitting under visible light irradiation , 2012 .

[17]  Zhaoyang Fan,et al.  Comparing graphene-TiO₂ nanowire and graphene-TiO₂ nanoparticle composite photocatalysts. , 2012, ACS applied materials & interfaces.

[18]  Nathan T. Hahn,et al.  Enhancing visible light photo-oxidation of water with TiO2 nanowire arrays via cotreatment with H2 and NH3: synergistic effects between Ti3+ and N. , 2012, Journal of the American Chemical Society.

[19]  N. Dimitrijević,et al.  Coupling Titania Nanotubes and Carbon Nanotubes To Create Photocatalytic Nanocomposites , 2012 .

[20]  Yang Song,et al.  Effects of high pressure on azobenzene and hydrazobenzene probed by Raman spectroscopy. , 2011, The journal of physical chemistry. B.

[21]  Sean C. Smith,et al.  Hybrid Graphene/Titania Nanocomposite: Interface Charge Transfer, Hole Doping, and Sensitization for Visible Light Response. , 2011, The journal of physical chemistry letters.

[22]  Darren Delai Sun,et al.  Self‐Assembling TiO2 Nanorods on Large Graphene Oxide Sheets at a Two‐Phase Interface and Their Anti‐Recombination in Photocatalytic Applications , 2010 .

[23]  Xianzhi Fu,et al.  TiO2-graphene nanocomposites for gas-phase photocatalytic degradation of volatile aromatic pollutant: is TiO2-graphene truly different from other TiO2-carbon composite materials? , 2010, ACS nano.

[24]  Xiaobo Chen,et al.  Semiconductor-based photocatalytic hydrogen generation. , 2010, Chemical reviews.

[25]  Tao Wu,et al.  Self-doped Ti3+ enhanced photocatalyst for hydrogen production under visible light. , 2010, Journal of the American Chemical Society.

[26]  Xianzhi Fu,et al.  New Insight for Enhanced Photocatalytic Activity of TiO2 by Doping Carbon Nanotubes: A Case Study on Degradation of Benzene and Methyl Orange , 2010 .

[27]  J. M. Coronado,et al.  Development of alternative photocatalysts to TiO2: Challenges and opportunities , 2009 .

[28]  Omid Akhavan,et al.  Photocatalytic Reduction of Graphene Oxide Nanosheets on TiO2 Thin Film for Photoinactivation of Bacteria in Solar Light Irradiation , 2009 .

[29]  W. Sigmund,et al.  Photocatalytic Carbon‐Nanotube–TiO2 Composites , 2009 .

[30]  Z. Hiroi,et al.  Photoinduced conductivity in tin dioxide thin films , 2009 .

[31]  Zhong Lin Wang,et al.  Gigantic enhancement in response and reset time of ZnO UV nanosensor by utilizing Schottky contact and surface functionalization. , 2009, Applied physics letters.

[32]  K. Schmidt-Rohr,et al.  Solid-State 13C NMR Characterization of Carbon-Modified TiO2 , 2009 .

[33]  J. Kousal,et al.  Vacuum thermal degradation of poly(ethylene oxide). , 2009, The journal of physical chemistry. B.

[34]  D. Ghosh,et al.  Titanium Nanoparticles Stabilized by Ti-C Covalent Bonds , 2008 .

[35]  Xiaobo Chen,et al.  Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications. , 2007, Chemical reviews.

[36]  Yukio Ogata,et al.  Determination of parameters of electron transport in dye-sensitized solar cells using electrochemical impedance spectroscopy. , 2006, The journal of physical chemistry. B.

[37]  A. Gedanken,et al.  Synthesis and Characterization of TiO2@C Core−Shell Composite Nanoparticles and Evaluation of Their Photocatalytic Activities , 2006 .

[38]  K. Darowicki,et al.  Selection of measurement frequency in Mott–Schottky analysis of passive layer on nickel , 2006 .

[39]  Jiaguo Yu,et al.  Enhancement of photocatalytic activity of mesoporous TiO2 by using carbon nanotubes , 2005 .

[40]  Hajime Haneda,et al.  Visible-light-driven photocatalysis on fluorine-doped TiO2 powders by the creation of surface oxygen vacancies , 2005 .

[41]  H. Kisch,et al.  Daylight photocatalysis by carbon-modified titanium dioxide. , 2003, Angewandte Chemie.

[42]  C. Cardinaud,et al.  Characterisation of TiN coatings and of the TiN/Si interface by X-ray photoelectron spectroscopy and Auger electron spectroscopy , 1993 .

[43]  T. Rao,et al.  Superhydrophilic graphene-loaded TiO2 thin film for self-cleaning applications. , 2013, ACS applied materials & interfaces.