Justification of a two dimensional evolutionary Ginzburg-Landau superconductivity model

It is proved that a two dimensional evolutionary Ginzburg-Landau superconductivity model is an approximation of a corresponding thin plate three dimensional superconductivity model when the thickness of the plate uniformly approaches zero. Some related topics such as existence of weak solutions to the three dimensional variable thickness model and the convergence when the variable thickness tends to zero are discussed. A numerical experiment using the now model is reported.

[1]  Zeros of a complex Ginzburg–Landau order parameter with applications to superconductivity , 1994, European Journal of Applied Mathematics.

[2]  Qiang Du,et al.  Global existence and uniqueness of solutions of the time-dependent ginzburg-landau model for superconductivity , 1994 .

[3]  Sam D. Howison,et al.  Macroscopic Models for Superconductivity , 1992, SIAM Rev..

[4]  Zhiming Chen,et al.  On a non-stationary Ginzburg–Landau superconductivity model , 1993 .

[5]  Jin Liang,et al.  Asymptotic Behavior of the Solutions of an Evolutionary Ginzburg-Landau Superconductivity Model , 1995 .

[6]  Tang Qi,et al.  On an evolutionary system of ginzburg-landau equations with fixed total magnetic flux , 1995 .

[7]  Qiang Du,et al.  Analysis and Approximation of the Ginzburg-Landau Model of Superconductivity , 1992, SIAM Rev..

[8]  Qiang Du,et al.  A model for superconducting thin films having variable thickness , 1993 .

[9]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[10]  Vivette Girault,et al.  Finite Element Methods for Navier-Stokes Equations - Theory and Algorithms , 1986, Springer Series in Computational Mathematics.

[11]  G. M. Éliashberg,et al.  Generalization of the Ginzburg-Landau Equations for Non-Stationary Problems in the Case of Alloys with Paramagnetic Impurities - JETP 27, 328 (1968) , 1968 .

[12]  Shouhong Wang,et al.  Time dependent Ginzburg-Landau equations of superconductivity , 1995 .

[13]  Stefan Müller,et al.  On a new class of elastic deformations not allowing for cavitation , 1994 .