Energy-Efficient Information Transfer by Visual Pathway Synapses

[1]  S. Nirenberg,et al.  Determining the role of correlated firing in large populations of neurons using white noise and natural scene stimuli , 2012, Vision Research.

[2]  D. Attwell,et al.  Synaptic Energy Use and Supply , 2012, Neuron.

[3]  D. Attwell,et al.  Updated Energy Budgets for Neural Computation in the Neocortex and Cerebellum , 2012, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[4]  Lingamneni Avinash,et al.  What to do about the end of Moore's law, probably! , 2012, DAC Design Automation Conference 2012.

[5]  Richard M. Karp,et al.  Algorithmic methodologies for ultra-efficient inexact architectures for sustaining technology scaling , 2012, CF '12.

[6]  Jeremy E. Niven,et al.  Miniaturization of Nervous Systems and Neurons , 2012, Current Biology.

[7]  R. Shigemoto,et al.  Mechanisms Underlying Signal Filtering at a Multisynapse Contact , 2012, The Journal of Neuroscience.

[8]  Current Biology , 2012, Current Biology.

[9]  P. Sterling,et al.  Why Do Axons Differ in Caliber? , 2012, The Journal of Neuroscience.

[10]  G. Tononi,et al.  Sleep and wake modulate spine turnover in the adolescent mouse cortex , 2011, Nature Neuroscience.

[11]  Xin Wang,et al.  Recoding of Sensory Information across the Retinothalamic Synapse , 2010, The Journal of Neuroscience.

[12]  W. Martin Usrey,et al.  Spike Timing and Information Transmission at Retinogeniculate Synapses , 2010, The Journal of Neuroscience.

[13]  Simon B. Laughlin,et al.  Action Potential Energy Efficiency Varies Among Neuron Types in Vertebrates and Invertebrates , 2010, PLoS Comput. Biol..

[14]  Bruce P. Bean,et al.  Sodium Entry during Action Potentials of Mammalian Neurons: Incomplete Inactivation and Reduced Metabolic Efficiency in Fast-Spiking Neurons , 2009, Neuron.

[15]  Jörg R. P. Geiger,et al.  Energy-Efficient Action Potentials in Hippocampal Mossy Fibers , 2009, Science.

[16]  P. Sterling,et al.  How the Optic Nerve Allocates Space, Energy Capacity, and Information , 2009, The Journal of Neuroscience.

[17]  Lawrence C. Sincich,et al.  Preserving Information in Neural Transmission , 2009, The Journal of Neuroscience.

[18]  G. Tononi,et al.  Molecular and electrophysiological evidence for net synaptic potentiation in wake and depression in sleep , 2008, Nature Neuroscience.

[19]  Chun-I Yeh,et al.  Temporal precision in the neural code and the timescales of natural vision , 2007, Nature.

[20]  T. Weyand,et al.  Retinogeniculate transmission in wakefulness. , 2007, Journal of neurophysiology.

[21]  P. Sterling,et al.  How Much the Eye Tells the Brain , 2006, Current Biology.

[22]  Peter Jonas,et al.  Patch-clamp recording from mossy fiber terminals in hippocampal slices , 2006, Nature Protocols.

[23]  D. Attwell,et al.  Neuroenergetics and the kinetic design of excitatory synapses , 2005, Nature Reviews Neuroscience.

[24]  Lu-Yang Wang,et al.  Developmental Transformation of the Release Modality at the Calyx of Held Synapse , 2005, The Journal of Neuroscience.

[25]  A. Vendrik,et al.  Determination of the transfer ratio of cat's geniculate neurons through quasi-intracellular recordings and the relation with the level of alertness , 2004, Experimental Brain Research.

[26]  Terrence J Sejnowski,et al.  Communication in Neuronal Networks , 2003, Science.

[27]  Wade G Regehr,et al.  Presynaptic Modulation of the Retinogeniculate Synapse , 2003, The Journal of Neuroscience.

[28]  G. Spirou,et al.  Optimizing Synaptic Architecture and Efficiency for High-Frequency Transmission , 2002, Neuron.

[29]  B. Barbour,et al.  Properties of Unitary Granule Cell→Purkinje Cell Synapses in Adult Rat Cerebellar Slices , 2002, The Journal of Neuroscience.

[30]  Wade G. Regehr,et al.  Contributions of Receptor Desensitization and Saturation to Plasticity at the Retinogeniculate Synapse , 2002, Neuron.

[31]  S. Laughlin,et al.  An Energy Budget for Signaling in the Grey Matter of the Brain , 2001, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[32]  C. E. SHANNON,et al.  A mathematical theory of communication , 1948, MOCO.

[33]  W. Regehr,et al.  Developmental Remodeling of the Retinogeniculate Synapse , 2000, Neuron.

[34]  R. Reid,et al.  Temporal Coding of Visual Information in the Thalamus , 2000, The Journal of Neuroscience.

[35]  Reid R. Clay,et al.  Specificity and strength of retinogeniculate connections. , 1999, Journal of neurophysiology.

[36]  C. Koch,et al.  Encoding of visual information by LGN bursts. , 1999, Journal of neurophysiology.

[37]  Y. Dan,et al.  Coding of visual information by precisely correlated spikes in the lateral geniculate nucleus , 1998, Nature Neuroscience.

[38]  T. Sejnowski,et al.  Computational Models of Thalamocortical Augmenting Responses , 1998, The Journal of Neuroscience.

[39]  T. Salt,et al.  Characterization of sensory and corticothalamic excitatory inputs to rat thalamocortical neurones in vitro , 1998, The Journal of physiology.

[40]  T J Sejnowski,et al.  Cellular and network models for intrathalamic augmenting responses during 10-Hz stimulation. , 1998, Journal of neurophysiology.

[41]  William B. Levy,et al.  Energy Efficient Neural Codes , 1996, Neural Computation.

[42]  William Bialek,et al.  Entropy and Information in Neural Spike Trains , 1996, cond-mat/9603127.

[43]  H. Robinson,et al.  Injection of digitally synthesized synaptic conductance transients to measure the integrative properties of neurons , 1993, Journal of Neuroscience Methods.

[44]  R. Silver,et al.  Estimated conductance of glutamate receptor channels activated during EPSCs at the cerebellar mossy fiber-granule cell synapse , 1993, Neuron.

[45]  Shaul Hestrin,et al.  Activation and desensitization of glutamate-activated channels mediating fast excitatory synaptic currents in the visual cortex , 1992, Neuron.

[46]  D. McCormick,et al.  Simulation of the currents involved in rhythmic oscillations in thalamic relay neurons. , 1992, Journal of neurophysiology.

[47]  D. McCormick,et al.  A model of the electrophysiological properties of thalamocortical relay neurons. , 1992, Journal of neurophysiology.

[48]  R. Traub,et al.  Neuronal Networks of the Hippocampus , 1991 .

[49]  D. McCormick,et al.  Properties of a hyperpolarization‐activated cation current and its role in rhythmic oscillation in thalamic relay neurones. , 1990, The Journal of physiology.

[50]  S. Sherman,et al.  N-methyl-D-aspartate receptors contribute to excitatory postsynaptic potentials of cat lateral geniculate neurons recorded in thalamic slices. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[51]  S. Sherman,et al.  Dendritic current flow in relay cells and interneurons of the cat's lateral geniculate nucleus. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[52]  D N Mastronarde,et al.  Two classes of single-input X-cells in cat lateral geniculate nucleus. II. Retinal inputs and the generation of receptive-field properties. , 1987, Journal of neurophysiology.

[53]  S. Sherman,et al.  Fine structural morphology of identified X- and Y-cells in the cat's lateral geniculate nucleus , 1984, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[54]  D. Hubel,et al.  Effects of sleep and arousal on the processing of visual information in the cat , 1981, Nature.

[55]  A. Hodgkin,et al.  A quantitative description of membrane current and its application to conduction and excitation in nerve , 1952, The Journal of physiology.