Implicit Manifold Reconstruction

Let P be a dense set of points sampled from an m-dimensional compact smooth manifold Σ in Rd. We show how to construct an implicit function φ: Rd → Rd--m from P so that the zero-set Sφ of φ contains a homeomorphic approximation of Σ. The Hausdorff distance between Σ and this homeomorphic approximation is at most eτ for any fixed τ < 2. Moreover, for every point x at distance eτ or less from Σ, the normal space of Sφ at x makes an O(e(τ-1)/2) angle with the normal space of Σ at the point nearest to x. The function φ has local support, which makes local homeomorphic reconstruction possible without a complete sampling.

[1]  Holger Wendland,et al.  Piecewise polynomial, positive definite and compactly supported radial functions of minimal degree , 1995, Adv. Comput. Math..

[2]  Tony DeRose,et al.  Surface reconstruction from unorganized points , 1992, SIGGRAPH.

[3]  Greg Turk,et al.  Generating textures on arbitrary surfaces using reaction-diffusion , 1991, SIGGRAPH.

[4]  Bert Mendelson Introduction to Topology , 1975 .

[5]  Adi Ben-Israel,et al.  On principal angles between subspaces in Rn , 1992 .

[6]  P Hanrahan,et al.  Digital materials and virtual weathering. , 2000, Scientific American.

[7]  Jean-Daniel Boissonnat,et al.  Smooth surface reconstruction via natural neighbour interpolation of distance functions , 2002, Comput. Geom..

[8]  Csaba Szepesvári,et al.  Manifold-Adaptive Dimension Estimation , 2007, ICML '07.

[9]  Tim G. Myers,et al.  The flow and solidification of a thin fluid film on an arbitrary three-dimensional surface , 2002 .

[10]  Matthias Hein,et al.  Intrinsic dimensionality estimation of submanifolds in Rd , 2005, ICML.

[11]  John B. Greer,et al.  An Improvement of a Recent Eulerian Method for Solving PDEs on General Geometries , 2006, J. Sci. Comput..

[12]  Tamal K. Dey,et al.  An Adaptive MLS Surface for Reconstruction with Guarantees , 2022 .

[13]  Peter J. Bickel,et al.  Maximum Likelihood Estimation of Intrinsic Dimension , 2004, NIPS.

[14]  Ravi Krishna Kolluri,et al.  Provably good moving least squares , 2005, SIGGRAPH Courses.

[15]  Matthias Hein,et al.  Intrinsic Dimensionality Estimation of Submanifolds in Euclidean space , 2005, ICML 2005.

[16]  Siu-Wing Cheng,et al.  Tangent Estimation from Point Samples , 2016, Discret. Comput. Geom..

[17]  Steven J. Ruuth,et al.  A simple embedding method for solving partial differential equations on surfaces , 2008, J. Comput. Phys..

[18]  Siu-Wing Cheng,et al.  Dimension detection via slivers , 2009, SODA.

[19]  Marc Alexa,et al.  Computing and Rendering Point Set Surfaces , 2003, IEEE Trans. Vis. Comput. Graph..

[20]  Bernhard Schölkopf,et al.  Nonlinear Component Analysis as a Kernel Eigenvalue Problem , 1998, Neural Computation.

[21]  Balázs Kégl,et al.  Intrinsic Dimension Estimation Using Packing Numbers , 2002, NIPS.

[22]  F. Mémoli,et al.  Implicit brain imaging , 2004, NeuroImage.

[23]  Mikhail Belkin,et al.  Constructing Laplace operator from point clouds in Rd , 2009, SODA.

[24]  Guillermo Sapiro,et al.  Variational Problems and Partial Differential Equations on Implicit Surfaces: Bye Bye Triangulated Surfaces? , 2003 .

[25]  Andrew Witkin,et al.  Reaction-diffusion textures , 1991, SIGGRAPH.

[26]  Richard K. Beatson,et al.  Reconstruction and representation of 3D objects with radial basis functions , 2001, SIGGRAPH.

[27]  Charles R. Johnson,et al.  Topics in Matrix Analysis , 1991 .

[28]  Li-Tien Cheng,et al.  Variational Problems and Partial Differential Equations on Implicit Surfaces: The Framework and Exam , 2000 .

[29]  Liang Wang,et al.  Extrapolating Learned Manifolds for Human Activity Recognition , 2007, 2007 IEEE International Conference on Image Processing.

[30]  Jian Liang,et al.  Solving Partial Differential Equations on Point Clouds , 2013, SIAM J. Sci. Comput..

[31]  Leonidas J. Guibas,et al.  Manifold Reconstruction in Arbitrary Dimensions Using Witness Complexes , 2009, Discret. Comput. Geom..

[32]  Joachim Giesen,et al.  Shape Dimension and Intrinsic Metric from Samples of Manifolds , 2004, Discret. Comput. Geom..

[33]  Jean-Daniel Boissonnat,et al.  Manifold Reconstruction Using Tangential Delaunay Complexes , 2010, Discrete & Computational Geometry.

[34]  Aurél Galántai,et al.  Jordan's principal angles in complex vector spaces , 2006, Numer. Linear Algebra Appl..

[35]  R. Varga,et al.  Block diagonally dominant matrices and generalizations of the Gerschgorin circle theorem , 1962 .

[36]  D. Levin,et al.  Mesh-Independent Surface Interpolation , 2004 .

[37]  Tamal K. Dey,et al.  Shape Dimension and Approximation from Samples , 2002, SODA '02.

[38]  Tamal K. Dey,et al.  A simple provable algorithm for curve reconstruction , 1999, SODA '99.

[39]  Gene H. Golub,et al.  Numerical methods for computing angles between linear subspaces , 1971, Milestones in Matrix Computation.

[40]  Yajun Wang,et al.  Provable Dimension Detection Using Principal Component Analysis , 2008, Int. J. Comput. Geom. Appl..

[41]  Gene H. Golub,et al.  Matrix computations , 1983 .

[42]  Tamal K. Dey,et al.  Manifold reconstruction from point samples , 2005, SODA '05.

[43]  T. Myers,et al.  A mathematical model for atmospheric ice accretion and water flow on a cold surface , 2004 .

[44]  Marc Alexa,et al.  Point-sampled cell complexes , 2006, ACM Trans. Graph..

[45]  J. Tenenbaum,et al.  A global geometric framework for nonlinear dimensionality reduction. , 2000, Science.