The nonconforming virtual element method for fourth-order singular perturbation problem

We present the nonconforming virtual element method for the fourth-order singular perturbation problem. The virtual element proposed in this paper is a variant of the C 0 -continuous nonconforming virtual element presented in our previous work and allows to compute two different projection operators that are used for the construction of the discrete scheme. We show the optimal convergence in the energy norm for the nonconforming virtual element method. Further, the lowest order nonconforming method is proved to be uniformly convergent with respect to the perturbation parameter. Finally, we verify the convergence for the nonconforming virtual element method by some numerical tests.

[1]  P. Lascaux,et al.  Some nonconforming finite elements for the plate bending problem , 1975 .

[2]  Bei Zhang,et al.  The nonconforming virtual element method for parabolic problems , 2019, Applied Numerical Mathematics.

[3]  Shaochun Chen,et al.  The nonconforming virtual element method for elasticity problems , 2019, J. Comput. Phys..

[4]  Susanne C. Brenner,et al.  Some Estimates for Virtual Element Methods , 2017, Comput. Methods Appl. Math..

[5]  Gianmarco Manzini,et al.  Conforming and nonconforming virtual element methods for elliptic problems , 2015, 1507.03543.

[6]  G. Manzini,et al.  SUPG stabilization for the nonconforming virtual element method for advection–diffusion–reaction equations , 2018, Computer Methods in Applied Mechanics and Engineering.

[7]  Long Chen,et al.  Nonconforming Virtual Element Method for 2mth Order Partial Differential Equations in ℝn , 2018, Math. Comput..

[8]  Wang,et al.  MODIFIED MORLEY ELEMENT METHOD FOR A FOURTH ORDER ELLIPTIC SINGULAR PERTURBATION PROBLEM , 2006 .

[9]  Susanne C. Brenner,et al.  A C0 Interior Penalty Method for a Fourth Order Elliptic Singular Perturbation Problem , 2011, SIAM J. Numer. Anal..

[10]  L. Donatella Marini,et al.  Virtual Element Method for fourth order problems: L2-estimates , 2016, Comput. Math. Appl..

[11]  F. Brezzi,et al.  Basic principles of Virtual Element Methods , 2013 .

[12]  Philippe G. Ciarlet,et al.  The finite element method for elliptic problems , 2002, Classics in applied mathematics.

[13]  P. F. Antonietti,et al.  The fully nonconforming virtual element method for biharmonic problems , 2016, 1611.08736.

[14]  Shaochun Chen,et al.  Uniformly convergent C 0‐nonconforming triangular prism element for fourth‐order elliptic singular perturbation problem , 2014 .

[15]  Kai Tang,et al.  Morley-Wang-Xu element methods with penalty for a fourth order elliptic singular perturbation problem , 2017, Adv. Comput. Math..

[16]  Jianguo Huang,et al.  Some error analysis on virtual element methods , 2017, 1708.08558.

[17]  L. Morley The Triangular Equilibrium Element in the Solution of Plate Bending Problems , 1968 .

[18]  Xiaoping Xie,et al.  Uniformly Stable Rectangular Elements for Fourth Order Elliptic Singular Perturbation Problems , 2011 .

[19]  Franco Brezzi,et al.  Virtual Element Methods for plate bending problems , 2013 .

[20]  Gianmarco Manzini,et al.  The NonConforming Virtual Element Method for the Stokes Equations , 2016, SIAM J. Numer. Anal..

[21]  Xue-Cheng Tai,et al.  A robust nonconforming H2-element , 2001, Math. Comput..

[22]  Houde Han,et al.  An equation decomposition method for the numerical solution of a fourth‐order elliptic singular perturbation problem , 2012 .

[23]  Shaochun Chen,et al.  The Morley-Type Virtual Element for Plate Bending Problems , 2018, J. Sci. Comput..

[24]  Shaochun Chen,et al.  The Divergence-Free Nonconforming Virtual Element for the Stokes Problem , 2019, SIAM J. Numer. Anal..

[25]  Ahmed Alsaedi,et al.  Equivalent projectors for virtual element methods , 2013, Comput. Math. Appl..

[26]  J. Guzmán,et al.  A family of non-conforming elements and the analysis of Nitsche’s method for a singularly perturbed fourth order problem , 2012 .

[27]  Xin Liu,et al.  A nonconforming virtual element method for the Stokes problem on general meshes , 2017 .

[28]  Wang,et al.  A ROBUST FINITE ELEMENT METHOD FOR A 3-D ELLIPTIC SINGULAR PERTURBATION PROBLEM , 2007 .

[29]  Shaochun Chen,et al.  The nonconforming virtual element method for plate bending problems , 2016 .

[30]  K. Lipnikov,et al.  The nonconforming virtual element method , 2014, 1405.3741.

[31]  L. R. Scott,et al.  The Mathematical Theory of Finite Element Methods , 1994 .

[32]  G. Paulino,et al.  PolyMesher: a general-purpose mesh generator for polygonal elements written in Matlab , 2012 .

[33]  Shaochun Chen,et al.  UNIFORMLY CONVERGENT NONCONFORMING ELEMENT FOR 3-D FOURTH ORDER ELLIPTIC SINGULAR PERTURBATION PROBLEM , 2014 .