Local projection stabilisation on S-type meshes for convection–diffusion problems with characteristic layers

Singularly perturbed convection–diffusion problems with exponential and characteristic layers are considered on the unit square. The discretisation is based on layer-adapted meshes. The standard Galerkin method and the local projection scheme are analysed for bilinear and higher order finite element where enriched spaces were used. For bilinears, first order convergence in the ε-weighted energy norm is shown for both the Galerkin and the stabilised scheme. However, supercloseness results of second order hold for the Galerkin method in the ε-weighted energy norm and for the local projection scheme in the corresponding norm. For the enriched $${\mathcal{Q}_p}$$-elements, p ≥ 2, which already contain the space $${\mathcal{P}_{p+1}}$$, a convergence order p + 1 in the ε-weighted energy norm is proved for both the Galerkin method and the local projection scheme. Furthermore, the local projection methods provides a supercloseness result of order p + 1 in local projection norm.

[1]  T. Hughes,et al.  MULTI-DIMENSIONAL UPWIND SCHEME WITH NO CROSSWIND DIFFUSION. , 1979 .

[2]  Torsten Linß,et al.  Superconvergence analysis of the SDFEM for elliptic problems with characteristic layers , 2008 .

[3]  Timothy A. Davis,et al.  Algorithm 832: UMFPACK V4.3---an unsymmetric-pattern multifrontal method , 2004, TOMS.

[4]  Sebastian Franz Continuous interior penalty method on a Shishkin mesh for convection-diffusion problems with characteristic boundary layers , 2008 .

[5]  Erik Burman,et al.  Local Projection Stabilization for the Oseen Problem and its Interpretation as a Variational Multiscale Method , 2006, SIAM J. Numer. Anal..

[6]  John J. H. Miller Fitted Numerical Methods for Singular Perturbation Problems: Error Estimates in the Maximum Norm for Linear Problems in One and Two Dimensions , 1996 .

[7]  Roland Becker,et al.  A Two-Level Stabilization Scheme for the Navier-Stokes Equations , 2004 .

[8]  Gunar Matthies,et al.  A UNIFIED CONVERGENCE ANALYSIS FOR LOCAL PROJECTION STABILISATIONS APPLIED TO THE OSEEN PROBLEM , 2007 .

[9]  Gunar Matthies,et al.  Local projection stabilisation for higher order discretisations of convection-diffusion problems on Shishkin meshes , 2009, Adv. Comput. Math..

[10]  Torsten Linß,et al.  Asymptotic Analysis and Shishkin-Type Decomposition for an Elliptic Convection–Diffusion Problem , 2001 .

[11]  Almerico Murli,et al.  Numerical Mathematics and Advanced Applications , 2003 .

[12]  L. R. Scott,et al.  The Mathematical Theory of Finite Element Methods , 1994 .

[13]  Torsten Linß,et al.  Numerical methods on Shishkin meshes for linear convection-diffusion problems , 2001 .

[14]  Lutz Tobiska,et al.  The SDFEM for a Convection-Diffusion Problem with a Boundary Layer: Optimal Error Analysis and Enhancement of Accuracy , 2003, SIAM J. Numer. Anal..

[15]  Hans-Görg Roos,et al.  Sufficient Conditions for Uniform Convergence on Layer-Adapted Grids , 1999, Computing.

[16]  T. Apel Anisotropic Finite Elements: Local Estimates and Applications , 1999 .

[17]  Torsten Linß,et al.  Analysis of a Galerkin finite element method on a Bakhvalov–Shishkin mesh for a linear convection–diffusion problem , 2000 .

[18]  Martin Stynes,et al.  A Uniformly Convergent Galerkin Method on a Shishkin Mesh for a Convection-Diffusion Problem☆ , 1997 .

[19]  Sebastian Franz,et al.  Singularly perturbed problems with characteristic layers : Supercloseness and postprocessing , 2008 .

[20]  U MartinStynes A Uniformly Convergent Galerkin Method on a Shishkin Mesh for a Convection-Diffusion Problem , 1997 .

[21]  N. S. Bakhvalov The optimization of methods of solving boundary value problems with a boundary layer , 1969 .

[22]  Gunar Matthies,et al.  MooNMD – a program package based on mapped finite element methods , 2004 .

[23]  Lutz Tobiska,et al.  Numerical Methods for Singularly Perturbed Differential Equations , 1996 .

[24]  Timothy A. Davis,et al.  A column pre-ordering strategy for the unsymmetric-pattern multifrontal method , 2004, TOMS.

[25]  Timothy A. Davis,et al.  An Unsymmetric-pattern Multifrontal Method for Sparse Lu Factorization , 1993 .

[26]  Gunar Matthies,et al.  Local projection methods on layer-adapted meshes for higher order discretisations of convection--diffusion problems , 2009 .

[27]  Lutz Tobiska,et al.  Using rectangular Qp elements in the SDFEM for a convection--diffusion problem with a boundary layer , 2008 .

[28]  Torsten Linß,et al.  An upwind difference scheme on a novel Shishkin-type mesh for a linear convection-diffusion problem , 1999 .

[29]  R. Bruce Kellogg,et al.  Sharpened bounds for corner singularities and boundary layers in a simple convection-diffusion problem , 2007, Appl. Math. Lett..

[30]  Timothy A. Davis,et al.  A combined unifrontal/multifrontal method for unsymmetric sparse matrices , 1999, TOMS.

[31]  Roland Becker,et al.  A finite element pressure gradient stabilization¶for the Stokes equations based on local projections , 2001 .

[32]  R. Bruce Kellogg,et al.  Corner singularities and boundary layers in a simple convection–diffusion problem☆ , 2005 .