ViewpointS: capturing formal data and informal contributions into an adaptive knowledge graph

Formal data is supported by means of specific languages from which the syntax and semantics have to be mastered, which represents an obstacle for collective intelligence. In contrast, informal knowledge relies on weak/ambiguous contributions e.g., I like. Reconciling the two forms of knowledge is a big challenge. We propose a brain-inspired knowledge representation approach called ViewpointS where formal data and informal contributions are merged into an adaptive knowledge graph which is then topologically, rather than logically, explored and assessed. We firstly illustrate within a mock-up simulation, where the hypothesis of knowledge emerging from preference dissemination is positively tested. Then we use a real-life web dataset (MovieLens) that mixes formal data about movies with user ratings. Our results show that ViewpointS is a relevant, generic and powerful innovative approach to capture and reconcile formal and informal knowledge and enable collective intelligence.

[1]  Jonathan L. Herlocker,et al.  Clustering items for collaborative filtering , 1999 .

[2]  A. Koller,et al.  Speech Acts: An Essay in the Philosophy of Language , 1969 .

[3]  Jeremy J. Carroll,et al.  Named graphs, provenance and trust , 2005, WWW '05.

[4]  L. Brakel A Universe of Consciousness: How Matter Becomes Imagination , 2001 .

[5]  P. Defourny,et al.  The PBRM (perception-based regional mapping): A spatial method to support regional development initiatives , 2009 .

[6]  Muhammad Aamir Cheema,et al.  Database Systems for Advanced Applications , 2015, Lecture Notes in Computer Science.

[7]  Alexander Mikroyannidis Toward a Social Semantic Web , 2007, Computer.

[8]  Enrico Motta,et al.  Integrating Folksonomies with the Semantic Web , 2007, ESWC.

[9]  Stefano A. Cerri,et al.  INTERACTIVE KNOWLEDGE CONSTRUCTION IN THE COLLABORATIVE BUILDING OF AN ENCYCLOPEDIA , 2005, Appl. Artif. Intell..

[10]  Marie-Laure Mugnier,et al.  Graph-based Knowledge Representation - Computational Foundations of Conceptual Graphs , 2008, Advanced Information and Knowledge Processing.

[11]  Sandra Bringay,et al.  Construction d'un vocabulaire patient/médecin dédié au cancer du sein à partir des médias sociaux , 2015, IC.

[12]  Huajun Chen,et al.  The Semantic Web , 2011, Lecture Notes in Computer Science.

[13]  Sylvie Ranwez,et al.  The semantic measures library and toolkit: fast computation of semantic similarity and relatedness using biomedical ontologies , 2014, Bioinform..

[14]  Mark A. Musen,et al.  Comparison of Ontology-based Semantic-Similarity Measures , 2008, AMIA.

[15]  Thomas R. Gruber,et al.  Collective knowledge systems: Where the Social Web meets the Semantic Web , 2008, J. Web Semant..

[16]  Andrew R. McKinstry-Wu,et al.  Connectome: How the Brain’s Wiring Makes Us Who We Are , 2013 .

[17]  Mathias Lux,et al.  From folksonomies to ontologies: employing wisdom of the crowds to serve learning purposes , 2007, Int. J. Knowl. Learn..

[18]  Anupriya Ankolekar,et al.  The two cultures: mashing up web 2.0 and the semantic web , 2007, WWW '07.

[19]  J. Hendler,et al.  Web Science : An interdisciplinary approach to understanding the World Wide Web , 2008 .

[20]  Tao Qin,et al.  LETOR: A benchmark collection for research on learning to rank for information retrieval , 2010, Information Retrieval.

[21]  Yiming Yang,et al.  Personalized active learning for collaborative filtering , 2008, SIGIR '08.

[22]  Clement Jonquet,et al.  Construction et évolution de connaissances par confrontation de points de vue : prototype pour la recherche d'information scientifique , 2014, IC.

[23]  Siegfried Handschuh,et al.  Semantic annotation for knowledge management: Requirements and a survey of the state of the art , 2006, J. Web Semant..

[24]  Stéphane Vial L’être et l’écran , 2013 .

[25]  Hidir Aras,et al.  Playful tagging: folksonomy generation using online games , 2009, WWW '09.

[26]  Seong-Bae Park,et al.  Learning the emergent knowledge from annotated blog postings , 2010, J. Web Semant..

[27]  Philippe Lemoisson,et al.  Viewpoints: An Alternative Approach toward Business Intelligence , 2013 .

[28]  S. Cerri,et al.  Preference Dissemination by Sharing Viewpoints , 2015, KEOD.

[29]  Kerstin M. Mueller Neural Darwinism The Theory Of Neuronal Group Selection , 2016 .

[30]  Julian Sefton-Green,et al.  Literature Review in Informal Learning with Technology Outside School , 2004 .

[31]  Jason J. Jung Attribute selection-based recommendation framework for short-head user group: An empirical study by MovieLens and IMDB , 2012, Expert Syst. Appl..

[32]  Peter Mika,et al.  Ontologies are us: A unified model of social networks and semantics , 2005, J. Web Semant..

[33]  Gediminas Adomavicius,et al.  Toward the next generation of recommender systems: a survey of the state-of-the-art and possible extensions , 2005, IEEE Transactions on Knowledge and Data Engineering.

[34]  Maria Simi,et al.  A Formalization of Viewpoints , 1995, Fundam. Informaticae.

[35]  Manuel Blum,et al.  reCAPTCHA: Human-Based Character Recognition via Web Security Measures , 2008, Science.

[36]  John G. Breslin,et al.  Social Semantic Web , 2009, Handbook of Semantic Web Technologies.

[37]  Steffen Staab,et al.  Learning by googling , 2004, SKDD.

[38]  Steffen Staab,et al.  Emergent Semantics Principles and Issues , 2004, DASFAA.

[39]  Mark A. Musen,et al.  Building a biomedical ontology recommender web service , 2010, J. Biomed. Semant..

[40]  Ted Pedersen,et al.  Measures of semantic similarity and relatedness in the biomedical domain , 2007, J. Biomed. Informatics.

[41]  John G. Breslin,et al.  The State of the Art in Tag Ontologies: A Semantic Model for Tagging and Folksonomies , 2008, Dublin Core Conference.

[42]  Dimitris Apostolou,et al.  Consensus Building in Collaborative Ontology Engineering Processes , 2006 .

[43]  Ciro Cattuto,et al.  Evaluating similarity measures for emergent semantics of social tagging , 2009, WWW '09.

[44]  Mathieu Lafourcade,et al.  Making people play for Lexical Acquisition with the JeuxDeMots prototype , 2007 .

[45]  G M Edelman,et al.  Selective networks capable of representative transformations, limited generalizations, and associative memory. , 1982, Proceedings of the National Academy of Sciences of the United States of America.

[46]  John G. Breslin,et al.  Using the Semantic Web for linking and reusing data across Web 2.0 communities , 2008, J. Web Semant..

[47]  Stéphane Vial,et al.  L'être et l'écran : comment le numérique change la perception , 2013 .

[48]  James A. Hendler,et al.  Handbook of Semantic Web Technologies , 2011, Handbook of Semantic Web Technologies.

[49]  Sharman Lichtenstein,et al.  Wikipedia model for collective intelligence: a review of information quality , 2009, Int. J. Knowl. Learn..

[50]  Hadas Weinberger,et al.  Tagging Web 2.0 content in context , 2011, Int. J. Knowl. Learn..

[51]  Giovanni Quattrone,et al.  Measuring Similarity in Large-scale Folksonomies , 2011, SEKE.

[52]  Anthony J. H. Simons,et al.  37 Things that Don't Work in Object-Oriented Modelling with UML , 1998 .

[53]  Hisaaki Yamaba,et al.  On a serendipity-oriented recommender system based on folksonomy , 2013, Artificial Life and Robotics.

[54]  Julie Henry,et al.  Building the EnCOrE dictionary collaboratively: strategy and practice , 2008, Int. J. Knowl. Learn..