Statistical independence properties of pseudorandom vectors produced by matrix generators

Abstract The uniformity test and the serial test are standard statistical tests for equidistribution and statistical independence, respectively, in sequences of uniform pseudorandom numbers. We introduce analogues of these tests for sequences of uniform pseudorandom vectors and we apply these tests to matrix generators for uniform pseudorandom vector generation. The results show that these generators behave well under these tests provided that the matrix in the generation algorithm is chosen carefully. The essential condition is that a certain figure of merit attached to the matrix be large. We also prove a general theorem which guarantees the existence of matrices with large figure of merit.

[1]  Jürgen Lehn,et al.  A nonlinear congruential pseudorandom number generator with power of two modulus , 1988 .

[2]  Shu Tezuka On the discrepancy of GFSR pseudorandom numbers , 1987, JACM.

[3]  E. Wright,et al.  An Introduction to the Theory of Numbers , 1939 .

[4]  Harald Niederreiter,et al.  The serial test for congruential pseudorandom numbers generated by inversions , 1989 .

[5]  Harald Niederreiter,et al.  Statistical independence of nonlinear congruential pseudorandom numbers , 1988 .

[6]  Harald Niederreiter,et al.  The serial test for digital k-step pseudorandom numbers , 1988 .

[7]  H. Grothe,et al.  The lattice structure of pseudo-random vectors generated by matrix generators , 1988 .

[8]  Harald Niederreiter Statistical Tests for Tausworthe Pseudo-Random Numbers , 1982 .

[9]  H. Niederreiter Pseudo-random numbers and optimal coefficients☆ , 1977 .

[10]  U. Dieter,et al.  Pseudo-random numbers. The exact distribution of pairs , 1971 .

[11]  H. Niederreiter Quasi-Monte Carlo methods and pseudo-random numbers , 1978 .

[12]  Lothar Afflerbach,et al.  The exact determination of rectangle discrepancy for linear congruential pseudorandom numbers , 1989 .

[13]  Rudolf Lide,et al.  Finite fields , 1983 .

[14]  Harald Niederreiter The Performance of k-Step Pseudorandom Number Generators under the Uniformity Test , 1984 .

[15]  Irving Reiner On the number of matrices with given characteristic polynomial , 1961 .

[16]  Harald Niederreiter The serial test for pseudo-random numbers generated by the linear congruential method , 1985 .

[17]  J. Lehn,et al.  Marsaglia’s lattice test and non-linear congruential pseudo random number generators , 1988 .

[18]  Harald Niederreiter,et al.  A statistical analysis of generalized feedback shift register pseudorandom number generators , 1987 .

[19]  Todd Cochrane On a trigonometric inequality of vinogradov , 1987 .

[20]  Holger Grothe,et al.  Matrix generators for pseudo-random vector generation , 1987 .

[21]  Jürgen Lehn,et al.  A non-linear congruential pseudo random number generator , 1986 .

[22]  H. Niederreiter Point sets and sequences with small discrepancy , 1987 .