Testing convective parameterizations with tropical measurements of HNO3, CO, H2O, and O3: Implications for the water vapor budget

[1] The updraft and downdraft mass flux profiles generated by convective parameterizations differ significantly from each other. Most convective parameterizations are tested against temperature and relative humidity profiles from radiosondes. Chemical tracers provide important additional constraints on the vertical redistribution of mass by convective parameterizations. We compile tropical climatologies of water vapor (H2O), ozone (O3), carbon monoxide (CO), and nitric acid (HNO3) from a variety of satellite, aircraft, and balloon-based measurement platforms. These climatologies are compared with the profiles predicted by a variant of the Emanuel convective parameterization, a two-column model of the tropical atmosphere, and by the implementations of the Relaxed Arakawa Schubert (RAS) and Zhang and McFarlane (ZM) parameterizations in a three-dimensional global forecast model. In general, the models with more pronounced convective outflow in the upper troposphere compare more favorably with observations. These models are associated with increased evaporative moistening in the middle and lower troposphere.

[1]  P. Bernath,et al.  Seasonal cycles of O3, CO, and convective outflow at the tropical tropopause , 2006 .

[2]  Reinhard Beer,et al.  TES atmospheric profile retrieval characterization: an orbit of simulated observations , 2006, IEEE Transactions on Geoscience and Remote Sensing.

[3]  Reinhard Beer,et al.  Tropospheric emission spectrometer: retrieval method and error analysis , 2006, IEEE Transactions on Geoscience and Remote Sensing.

[4]  Reinhard Beer,et al.  TES on the aura mission: scientific objectives, measurements, and analysis overview , 2006, IEEE Transactions on Geoscience and Remote Sensing.

[5]  S. Klein,et al.  GFDL's CM2 Global Coupled Climate Models. Part I: Formulation and Simulation Characteristics , 2006 .

[6]  D. Thompson,et al.  On the distribution and variability of ozone in the tropical upper troposphere: Implications for tropical deep convection and chemical‐dynamical coupling , 2005 .

[7]  P. Bernath,et al.  Retrievals for the atmospheric chemistry experiment Fourier-transform spectrometer. , 2005, Applied optics.

[8]  J. Russell,et al.  Technical note: A stratospheric climatology for O 3 , H 2 O, CH 4 , NO x , HCl and HF derived from HALOE measurements , 2005 .

[9]  P. Rasch,et al.  Tracer Transport in Deep Convective Updrafts: Plume Ensemble versus Bulk Formulations , 2005 .

[10]  R. Martin,et al.  The Vertical Structure of Tropical Convection and Its Impact on the Budgets of Water Vapor and Ozone , 2005 .

[11]  Samuel J. Oltmans,et al.  Development and Validation of a Time-Lag Correction for Vaisala Radiosonde Humidity Measurements , 2004 .

[12]  Shepard A. Clough,et al.  Predicted errors of tropospheric emission spectrometer nadir retrievals from spectral window selection , 2004 .

[13]  Melinda S. Peng,et al.  Recent Modifications of the Emanuel Convective Scheme in the Navy Operational Global Atmospheric Prediction System , 2004 .

[14]  Jun-Ichi Yano,et al.  Estimations of Mass Fluxes for Cumulus Parameterizations from High-Resolution Spatial Data , 2004 .

[15]  T. L. Thompson,et al.  Quantifying Stratospheric Ozone in the Upper Troposphere with in Situ Measurements of HCl , 2004, Science.

[16]  Peter F. Bernath,et al.  Atmospheric chemistry experiment (ACE): mission overview , 2004, SPIE Optics + Photonics.

[17]  H. Pumphrey,et al.  Fluctuations of Cloud, Humidity, and Thermal Structure near the Tropical Tropopause , 2003 .

[18]  Toshihiro Ogawa,et al.  Southern Hemisphere Additional Ozonesondes (SHADOZ) 1998–2000 tropical ozone climatology 1. Comparison with Total Ozone Mapping Spectrometer (TOMS) and ground-based measurements , 2003 .

[19]  K. Kelly,et al.  A simple explanation for the increase in relative humidity between 11 and 14 km in the tropics , 2002 .

[20]  Paul Ginoux,et al.  Interpretation of TOMS observations of tropical tropospheric ozone with a global model and in-situ observations , 2002 .

[21]  A. Thompson,et al.  Tropical ozone as an indicator of deep convection , 2002 .

[22]  A. Dessler The effect of deep, tropical convection on the tropical tropopause layer , 2002 .

[23]  William G. Read,et al.  UARS Microwave Limb Sounder upper tropospheric humidity measurement: Method and validation , 2001 .

[24]  P. V. Velthoven,et al.  Cross‐tropopause and interhemispheric transports into the tropical free troposphere over the Indian Ocean , 2001 .

[25]  Kerry Emanuel,et al.  A Parameterization of the Cloudiness Associated with Cumulus Convection; Evaluation Using TOGA COARE Data , 2001 .

[26]  D. Jacob,et al.  Global modeling of tropospheric chemistry with assimilated meteorology : Model description and evaluation , 2001 .

[27]  Leo J. Donner,et al.  A Cumulus Parameterization Including Mass Fluxes, Convective Vertical Velocities, and Mesoscale Effects: Thermodynamic and Hydrological Aspects in a General Circulation Model , 2001 .

[28]  D. Jacob,et al.  Transport and scavenging of soluble gases in a deep , 2000 .

[29]  Michael B. McElroy,et al.  Analysis of residual mean transport in the stratosphere: 1. Model description and comparison with satellite data , 2000 .

[30]  Clive D Rodgers,et al.  Inverse Methods for Atmospheric Sounding: Theory and Practice , 2000 .

[31]  B. Hannegan,et al.  Stratospheric ozone in 3-D models : A simple chemistry and the cross-tropopause flux , 2000 .

[32]  S. Oltmans,et al.  A barrier to vertical mixing at 14 km in the tropics: Evidence from ozonesondes and aircraft measurements , 1999 .

[33]  S. Manabe,et al.  The Role of Water Vapor Feedback in Unperturbed Climate Variability and Global Warming , 1999 .

[34]  K. Emanuel,et al.  Equilibrium atmospheres of a two‐column radiative‐convective model , 1999 .

[35]  Kerry Emanuel,et al.  Development and Evaluation of a Convection Scheme for Use in Climate Models , 1999 .

[36]  Colin Price,et al.  Vertical distributions of lightning NOx for use in regional and global chemical transport models , 1998 .

[37]  Vickie S. Connors,et al.  The Great African Plume from biomass burning: Generalizations from a three-dimensional study of TRACE A carbon monoxide , 1998 .

[38]  Mark Lawrence,et al.  The impact of cloud particle gravitational settling on soluble trace gas distributions , 1998 .

[39]  D. Jacob,et al.  Global simulation of tropospheric O3-NOx-hydrocarbon chemistry , 1998 .

[40]  Webster,et al.  Hydrogen radicals, nitrogen radicals, and the production of O3 in the upper troposphere , 1998, Science.

[41]  D. Blake,et al.  Chemical characteristics of continental outflow from Asia to the troposphere over the western Pacific Ocean during February‐March 1994: Results from PEM‐West B , 1997 .

[42]  D. Blake,et al.  Large‐scale distributions of tropospheric nitric, formic, and acetic acids over the western Pacific basin during wintertime , 1997 .

[43]  D. Weisenstein,et al.  In situ observations of NOy, O3, and the NOy/O3 ratio in the lower stratosphere , 1996 .

[44]  D. Blake,et al.  Chemical characteristics of continental outflow from Asia to the troposphere over the western Pacific Ocean during September–October 1991: Results from PEM-West A , 1996 .

[45]  N. Mahowald,et al.  Cumulus parameterizations in chemical transport models , 1995 .

[46]  E. Weinstock,et al.  Measurements of water vapor in the tropical lower stratosphere during the CEPEX Campaign: Results and interpretation , 1995 .

[47]  R. Houze,et al.  Revision to 'An integrated view of the 1987 Australian monsoon and its mesoscale convective systems. II: Vertical structure' , 1993 .

[48]  Brian E. Mapes,et al.  An integrated view of the 1987 Australian monsoon and its mesoscale convective systems. I: horizontal structure , 1993 .

[49]  K. Kelly,et al.  Water vapor and cloud water measurements over Darwin during the STEP 1987 tropical mission , 1993 .

[50]  D. Prichard,et al.  Do the sunspot numbers form a “chaotic” set? , 1992 .

[51]  D. Rind,et al.  A simple lightning parameterization for calculating global lightning distributions , 1992 .

[52]  S. Moorthi,et al.  Relaxed Arakawa-Schubert - A parameterization of moist convection for general circulation models , 1992 .

[53]  K. Emanuel A Scheme for Representing Cumulus Convection in Large-Scale Models , 1991 .

[54]  D. Ehhalt,et al.  In situ observations , 1980, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[55]  S. Esbensen,et al.  Determination of Bulk Properties of Tropical Cloud Clusters from Large-Scale Heat and Moisture Budgets , 1973 .

[56]  Alan K. Betts,et al.  A Composite Mesoscale Cumulonimbus Budget , 1973 .

[57]  J. Houghton,et al.  Climate change 2001 : the scientific basis , 2001 .

[58]  Tim N. Palmer,et al.  Physical Climate Processes and Feedbacks , 2001 .