Quasi-Monte Carlo for Highly Structured Generalised Response Models

Highly structured generalised response models, such as generalised linear mixed models and generalised linear models for time series regression, have become an indispensable vehicle for data analysis and inference in many areas of application. However, their use in practice is hindered by high-dimensional intractable integrals. Quasi-Monte Carlo (QMC) is a dynamic research area in the general problem of high-dimensional numerical integration, although its potential for statistical applications is yet to be fully explored. We survey recent research in QMC, particularly lattice rules, and report on its application to highly structured generalised response models. New challenges for QMC are identified and new methodologies are developed. QMC methods are seen to provide significant improvements compared with ordinary Monte Carlo methods.

[1]  Ed Anderson,et al.  LAPACK Users' Guide , 1995 .

[2]  Paul Bratley,et al.  Algorithm 659: Implementing Sobol's quasirandom sequence generator , 1988, TOMS.

[3]  Harald Niederreiter,et al.  Random number generation and Quasi-Monte Carlo methods , 1992, CBMS-NSF regional conference series in applied mathematics.

[4]  K. Fang,et al.  Number-theoretic methods in statistics , 1993 .

[5]  N. Breslow,et al.  Approximate inference in generalized linear mixed models , 1993 .

[6]  R. Wolfinger,et al.  Generalized linear mixed models a pseudo-likelihood approach , 1993 .

[7]  I. Sloan Lattice Methods for Multiple Integration , 1994 .

[8]  P. Diggle,et al.  Analysis of Longitudinal Data , 2003 .

[9]  Joseph F. Traub,et al.  Faster Valuation of Financial Derivatives , 1995 .

[10]  M. Evans,et al.  Methods for Approximating Integrals in Statistics with Special Emphasis on Bayesian Integration Problems , 1995 .

[11]  A. Owen,et al.  Valuation of mortgage-backed securities using Brownian bridges to reduce effective dimension , 1997 .

[12]  Sylvia Richardson,et al.  Markov Chain Monte Carlo in Practice , 1997 .

[13]  Henryk Wozniakowski,et al.  When Are Quasi-Monte Carlo Algorithms Efficient for High Dimensional Integrals? , 1998, J. Complex..

[14]  Robin Thompson,et al.  Quasi-Monte Carlo EM Algorithm for MLEs in Generalized Linear Mixed Models , 1998, COMPSTAT.

[15]  E. Ziegel,et al.  Proceedings in Computational Statistics , 1998 .

[16]  Stephen J. Wright,et al.  Numerical Optimization , 2018, Fundamental Statistical Inference.

[17]  Anthony Y. C. Kuk Laplace Importance Sampling for Generalized Linear Mixed Models , 1999 .

[18]  W. Dunsmuir,et al.  On autocorrelation in a Poisson regression model , 2000 .

[19]  S. R. Searle,et al.  Generalized, Linear, and Mixed Models , 2005 .

[20]  Wolfgang Jank,et al.  A survey of Monte Carlo algorithms for maximizing the likelihood of a two-stage hierarchical model , 2001 .

[21]  Pierre L'Ecuyer,et al.  Recent Advances in Randomized Quasi-Monte Carlo Methods , 2002 .

[22]  I. H. SLOAN,et al.  Constructing Randomly Shifted Lattice Rules in Weighted Sobolev Spaces , 2002, SIAM J. Numer. Anal..

[23]  William H. Press,et al.  Numerical recipes in C , 2002 .

[24]  Matt P. Wand,et al.  Smoothing and mixed models , 2003, Comput. Stat..

[25]  Frances Y. Kuo,et al.  Component-by-component constructions achieve the optimal rate of convergence for multivariate integration in weighted Korobov and Sobolev spaces , 2003, J. Complex..

[26]  Kai-Tai Fang,et al.  The effective dimension and quasi-Monte Carlo integration , 2003, J. Complex..

[27]  Frances Y. Kuo,et al.  Remark on algorithm 659: Implementing Sobol's quasirandom sequence generator , 2003, TOMS.

[28]  Henryk Wozniakowski,et al.  Finite-order weights imply tractability of multivariate integration , 2004, J. Complex..

[29]  Alexander C Wagenaar,et al.  Effects of lowering the legal BAC to 0.08 on single-vehicle-nighttime fatal traffic crashes in 19 jurisdictions. , 2004, Accident; analysis and prevention.

[30]  Sophia Rabe-Hesketh,et al.  Generalized latent variable models: multilevel, longitudinal, and structural equation models , 2004 .

[31]  Peter Colman,et al.  Analysis of Longitudinal Data(second edition) Diggle P, Heagarty P, Liang K-Y, Zeger S(2002)ISBN 0198524846; 396 pages;£40.00,$85.00 Oxford University Press; , 2004 .

[32]  Frances Y. Kuo,et al.  Lifting the Curse of Dimensionality , 2005 .

[33]  A. Owen,et al.  Control variates for quasi-Monte Carlo , 2005 .

[34]  Art B Owen,et al.  A quasi-Monte Carlo Metropolis algorithm. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[35]  Harald Niederreiter,et al.  Constructions of (t, m, s)-nets and (t, s)-sequences , 2005, Finite Fields Their Appl..

[36]  Ciprian M. Crainiceanu,et al.  Bayesian Analysis for Penalized Spline Regression Using WinBUGS , 2005 .

[37]  Galin L. Jones,et al.  Ascent‐based Monte Carlo expectation– maximization , 2005 .

[38]  Martin L Hazelton,et al.  Tutorial in biostatistics: spline smoothing with linear mixed models , 2005, Statistics in medicine.

[39]  C. McCulloch,et al.  Generalized Linear Mixed Models , 2005 .

[40]  S. R. Searle,et al.  Generalized, Linear, and Mixed Models: McCulloch/Generalized, Linear, and Mixed Models , 2005 .

[41]  G. Rodríguez-Yam,et al.  ESTIMATION FOR STATE-SPACE MODELS BASED ON A LIKELIHOOD APPROXIMATION , 2005 .

[42]  Wolfgang Jank,et al.  Quasi-Monte Carlo sampling to improve the efficiency of Monte Carlo EM , 2004, Comput. Stat. Data Anal..

[43]  Frances Y. Kuo,et al.  Constructing Embedded Lattice Rules for Multivariate Integration , 2006, SIAM J. Sci. Comput..

[44]  Dirk Nuyens,et al.  Fast algorithms for component-by-component construction of rank-1 lattice rules in shift-invariant reproducing kernel Hilbert spaces , 2006, Math. Comput..

[45]  Josef Dick,et al.  The construction of good extensible Korobov rules , 2007, Computing.

[46]  Ronald Cools,et al.  Numerical integration in logistic-normal models , 2006, Comput. Stat. Data Anal..

[47]  Grzegorz W. Wasilkowski,et al.  Randomly shifted lattice rules for unbounded integrands , 2006, J. Complex..

[48]  M. Wand,et al.  General design Bayesian generalized linear mixed models , 2006, math/0606491.

[49]  A. Owen,et al.  Estimating Mean Dimensionality of Analysis of Variance Decompositions , 2006 .

[50]  Arpit A. Almal,et al.  Lifting the Curse of Dimensionality , 2007 .

[51]  Jianxin Pan,et al.  Quasi-Monte Carlo estimation in generalized linear mixed models , 2007, Comput. Stat. Data Anal..

[52]  Josef Dick,et al.  The construction of good extensible rank-1 lattices , 2008, Math. Comput..