Finite Element Methods for the Numerical Simulation of Incompressible Viscous Fluid Flow Modeled by the Navier-Stokes Equations. Part II.

The Navier–Stokes equations have been known for more than a century and they still provide the most commonly used mathematical model to describe and study the motion of viscous fluids, including phenomena as complicated as turbulent flow. One can only marvel at the fact that these equations accurately describe phenomena whose length scales (resp., time scale) range from fractions of a millimeter (resp., of a second) to thousands of kilometers (resp., several years). Indeed, the Navier–Stokes equations have been validated by numerous comparisons between analytical or computational results and experimental measurements; some of these comparisons are reported in Canuto et al. 1988 [1], Lesieur 1990 [2], Guyon et al. 1991 [3], and Glowinski 2003 [4]. This note does not have the pretension to cover the full field of finite element methods for the Navier–Stokes equations and is organized in sections as follows: 1. The Navier–Stokes equations for incompressible viscous flow 2. Some operator splitting methods for initial value problems and applications to the Navier–Stokes equations 3. Iterative solution of the advection–diffusion sub–problems and the wavelike equation method for the advection sub–problems 4. Iterative solution of the Stokes type sub–problem 5. Finite element approximation of the Navier–Stokes equations 6. Numerical results

[1]  J. Daniel On the approximate minimization of functionals , 1969 .

[2]  Elijah Polak,et al.  Computational methods in optimization , 1971 .

[3]  W. Prager,et al.  Introduction of Mechanics of Continua , 1962 .

[4]  Roland Glowinski,et al.  Splitting Methods for the Numerical Solution of the Incompressible Navier-Stokes Equations. , 1984 .

[5]  Mordecai Avriel,et al.  Nonlinear programming , 1976 .

[6]  J. Szmelter Incompressible flow and the finite element method , 2001 .

[7]  T. Hughes,et al.  A new finite element formulation for computational fluid dynamics: V. Circumventing the Babuscka-Brezzi condition: A stable Petrov-Galerkin formulation of , 1986 .

[8]  Michel Fortin Finite element solution of the Navier—Stokes equations , 1993, Acta Numerica.

[9]  Jacques Periaux,et al.  A distributed Lagrange multiplier/fictitious domain method for flows around moving rigid bodies : Application to particulate flow , 1999 .

[10]  R. Glowinski,et al.  FINITE ELEMENT METHODS FOR NAVIER-STOKES EQUATIONS , 1992 .

[11]  R. Temam Navier-Stokes Equations , 1977 .

[12]  R. Glowinski,et al.  On the numerical implementation of eht Hilbert uniqueness method for the exact boundary controllability of the wave equation , 1990 .

[13]  R. Glowinski,et al.  Augmented Lagrangian and Operator-Splitting Methods in Nonlinear Mechanics , 1987 .

[14]  Gene H. Golub,et al.  Some History of the Conjugate Gradient and Lanczos Algorithms: 1948-1976 , 1989, SIAM Rev..

[15]  P. Hood,et al.  A numerical solution of the Navier-Stokes equations using the finite element technique , 1973 .

[16]  Luc Tartar,et al.  Topics in nonlinear analysis , 1978 .

[17]  G. Golub,et al.  Iterative solution of linear systems , 1991, Acta Numerica.

[18]  O. Pironneau,et al.  Error estimates for finite element method solution of the Stokes problem in the primitive variables , 1979 .

[19]  R. Glowinski,et al.  Numerical methods for the navier-stokes equations. Applications to the simulation of compressible and incompressible viscous flows , 1987 .

[20]  Michel Fortin,et al.  Mixed and Hybrid Finite Element Methods , 2011, Springer Series in Computational Mathematics.

[21]  Roland Glowinski,et al.  Erratum to: A numerical approach to the exact boundary controllability of the wave equation (I) Dirichlet controls: Description of the numerical methods , 1990 .

[22]  Jean Leray,et al.  Sur le mouvement d'un liquide visqueux emplissant l'espace , 1934 .

[23]  J. Lions Quelques méthodes de résolution de problèmes aux limites non linéaires , 1969 .

[24]  Vivette Girault,et al.  Finite Element Methods for Navier-Stokes Equations - Theory and Algorithms , 1986, Springer Series in Computational Mathematics.

[25]  E. Zeidler Nonlinear functional analysis and its applications , 1988 .

[26]  Jean E. Roberts,et al.  Mixed and hybrid methods , 1991 .

[27]  Roland Glowinski,et al.  A wave equation approach to the numerical solution of the Navier-Stokes equations for incompressible viscous flow , 1997 .

[28]  A. Majda,et al.  Rates of convergence for viscous splitting of the Navier-Stokes equations , 1981 .

[29]  A. D. Young,et al.  An Introduction to Fluid Mechanics , 1968 .

[30]  R. Glowinski,et al.  Exact and approximate controllability for distributed parameter systems , 1995, Acta Numerica.

[31]  T. Taylor,et al.  Computational methods for fluid flow , 1982 .

[32]  G. Marchuk Splitting and alternating direction methods , 1990 .

[33]  T. A. Zang,et al.  Spectral methods for fluid dynamics , 1987 .

[34]  A. Chorin Numerical solution of the Navier-Stokes equations , 1968 .

[35]  Olivier Goyon,et al.  High-Reynolds number solutions of Navier-Stokes equations using incremental unknowns , 1996 .

[36]  R. Glowinski,et al.  A distributed Lagrange multiplier/fictitious domain method for particulate flows , 1999 .

[37]  P. Raviart,et al.  Conforming and nonconforming finite element methods for solving the stationary Stokes equations I , 1973 .

[38]  G. Marchuk Methods of Numerical Mathematics , 1982 .

[39]  Philippe G. Ciarlet,et al.  The finite element method for elliptic problems , 2002, Classics in applied mathematics.

[40]  T. Hughes,et al.  A new finite element formulation for computational fluid dynamics: II. Beyond SUPG , 1986 .

[41]  P. G. Ciarlet,et al.  Basic error estimates for elliptic problems , 1991 .

[42]  P. Kloucek,et al.  Stability of the fractional step T-scheme for the nonstationary Navier-Stokes equations , 1994 .

[43]  R. Glowinski,et al.  A fictitious domain approach to the direct numerical simulation of incompressible viscous flow past moving rigid bodies: application to particulate flow , 2001 .

[44]  Rolf Rannacher,et al.  Numerical methods for the Navier-Stokes equations , 1994 .

[45]  R. D. Murphy,et al.  Iterative solution of nonlinear equations , 1994 .

[46]  J. Marsden,et al.  A mathematical introduction to fluid mechanics , 1979 .

[47]  L. R. Scott,et al.  The Mathematical Theory of Finite Element Methods , 1994 .

[48]  E. Fernández-Cara,et al.  The convergence of two numerical schemes for the Navier-Stokes equations , 1989 .

[49]  海老 豊,et al.  F. Thomasset: Implementation of Finite Element Methods for Navier-Stokes Equations, Springer-Verlag, New York and Heidelberg, 1981, viii+162ページ, 9,270円 (Springer Series in Computational Physics). , 1983 .

[50]  R. Glowinski,et al.  Numerical Methods for Nonlinear Variational Problems , 1985 .

[51]  O. Pironneau Finite Element Methods for Fluids , 1990 .

[52]  James M. Ortega,et al.  Iterative solution of nonlinear equations in several variables , 2014, Computer science and applied mathematics.

[53]  Yousef Saad,et al.  Iterative methods for sparse linear systems , 2003 .

[54]  J. Hiriart-Urruty,et al.  Convex analysis and minimization algorithms , 1993 .

[55]  G. Strang On the Construction and Comparison of Difference Schemes , 1968 .

[56]  J. Lions,et al.  Équations Différentielles Opérationnelles Et Problèmes Aux Limites , 1961 .

[57]  N. N. Yanenko,et al.  The Method of Fractional Steps , 1971 .

[58]  P. Raviart Finite element methods and Navier-Stokes equations , 1979 .

[59]  R. Schnabel,et al.  A view of unconstrained optimization , 1989 .

[60]  R. Glowinski,et al.  Incompressible Computational Fluid Dynamics: On Some Finite Element Methods for the Numerical Simulation of Incompressible Viscous Flow , 1993 .

[61]  Marcel Lesieur,et al.  Turbulence in fluids , 1990 .

[62]  J. Cahouet,et al.  Some fast 3D finite element solvers for the generalized Stokes problem , 1988 .

[63]  R. Temam Sur l'approximation de la solution des équations de Navier-Stokes par la méthode des pas fractionnaires (II) , 1969 .

[64]  Jacques Periaux,et al.  A distributed Lagrange multiplier/fictitious domain method for the simulation of flow around moving rigid bodies: application to particulate flow , 2000 .

[65]  François Thomasset,et al.  Implementation of Finite Element Methods for Navier-Stokes Equations , 1981 .

[66]  U. Ghia,et al.  High-Re solutions for incompressible flow using the Navier-Stokes equations and a multigrid method , 1982 .

[67]  R. Sani,et al.  Incompressible Flow and the Finite Element Method, Volume 1, Advection-Diffusion and Isothermal Laminar Flow , 1998 .

[68]  I. Ekeland,et al.  Convex analysis and variational problems , 1976 .

[69]  M. J. D. Powell,et al.  Restart procedures for the conjugate gradient method , 1977, Math. Program..

[70]  Randall J. LeVeque,et al.  Numerical methods based on additive splittings for hyperbolic partial differential equations , 1981 .

[71]  R. Glowinski,et al.  Supercomputer solutions of partial differential equation problems in computational fluid dynamics and in control , 1989 .

[72]  Jean Leray Aspects de la mécanique théorique des fluides , 1994 .

[73]  J. M. Thomas,et al.  Introduction à l'analyse numérique des équations aux dérivées partielles , 1983 .

[74]  A. Chorin A Numerical Method for Solving Incompressible Viscous Flow Problems , 1997 .

[75]  R. Hwang,et al.  Effect of Reynolds number on the eddy structure in a lid-driven cavity , 1998 .

[76]  G. Strang,et al.  An Analysis of the Finite Element Method , 1974 .

[77]  H. Kreiss,et al.  Initial-Boundary Value Problems and the Navier-Stokes Equations , 2004 .

[78]  T. Taylor,et al.  A Pseudospectral method for solution of the three-dimensional incompressible Navier-Stokes equations , 1987 .

[79]  Jean Leray,et al.  Essai sur les mouvements plans d'un fluide visqueux que limitent des parois. , 1934 .

[80]  E. Hopf,et al.  Über die Anfangswertaufgabe für die hydrodynamischen Grundgleichungen. Erhard Schmidt zu seinem 75. Geburtstag gewidmet , 1950 .

[81]  R. Glowinski,et al.  Viscous Flow Simulation by Finite Element Methods and Related Numerical Techniques , 1985 .

[82]  A General Convergence Result for Unconstrained Minimization Methods , 1972 .

[83]  C. Fletcher Computational techniques for fluid dynamics , 1992 .

[84]  L. Quartapelle,et al.  Numerical solution of the incompressible Navier-Stokes equations , 1993, International series of numerical mathematics.

[85]  Fujima Shoichi,et al.  Extension to three-dimensional problems of the upwind finite element scheme based on the choice of up- and downwind points , 1994 .

[86]  M. J. D. Powell,et al.  Some convergence properties of the conjugate gradient method , 1976, Math. Program..

[87]  Jorge Nocedal,et al.  Theory of algorithms for unconstrained optimization , 1992, Acta Numerica.

[88]  S. Turek a Comparative Study of Time-Stepping Techniques for the Incompressible Navier-Stokes Equations: from Fully Implicit Non-Linear Schemes to Semi-Implicit Projection Methods , 1996 .

[89]  A. Quarteroni,et al.  Numerical Approximation of Partial Differential Equations , 2008 .

[90]  Jie Shen,et al.  Hopf bifurcation of the unsteady regularized driven cavity flow , 1991 .

[91]  Roger Temam,et al.  On the theory and numerical analysis of the Navier-Stokes equations , 1973 .

[92]  R. Glowinski Finite element methods for incompressible viscous flow , 2003 .

[93]  C. Kelley Iterative Methods for Linear and Nonlinear Equations , 1987 .

[94]  M. Hestenes,et al.  Methods of conjugate gradients for solving linear systems , 1952 .

[95]  Jim Douglas,et al.  An absolutely stabilized finite element method for the stokes problem , 1989 .