Finite Element Methods for the Numerical Simulation of Incompressible Viscous Fluid Flow Modeled by the Navier-Stokes Equations. Part II.
暂无分享,去创建一个
Roland Glowinski | Edward J. Dean | L. Héctor Juárez | E. J. Dean | R. Glowinski | T. Pan | L. Juárez | T.-W. Pan
[1] J. Daniel. On the approximate minimization of functionals , 1969 .
[2] Elijah Polak,et al. Computational methods in optimization , 1971 .
[3] W. Prager,et al. Introduction of Mechanics of Continua , 1962 .
[4] Roland Glowinski,et al. Splitting Methods for the Numerical Solution of the Incompressible Navier-Stokes Equations. , 1984 .
[5] Mordecai Avriel,et al. Nonlinear programming , 1976 .
[6] J. Szmelter. Incompressible flow and the finite element method , 2001 .
[7] T. Hughes,et al. A new finite element formulation for computational fluid dynamics: V. Circumventing the Babuscka-Brezzi condition: A stable Petrov-Galerkin formulation of , 1986 .
[8] Michel Fortin. Finite element solution of the Navier—Stokes equations , 1993, Acta Numerica.
[9] Jacques Periaux,et al. A distributed Lagrange multiplier/fictitious domain method for flows around moving rigid bodies : Application to particulate flow , 1999 .
[10] R. Glowinski,et al. FINITE ELEMENT METHODS FOR NAVIER-STOKES EQUATIONS , 1992 .
[11] R. Temam. Navier-Stokes Equations , 1977 .
[12] R. Glowinski,et al. On the numerical implementation of eht Hilbert uniqueness method for the exact boundary controllability of the wave equation , 1990 .
[13] R. Glowinski,et al. Augmented Lagrangian and Operator-Splitting Methods in Nonlinear Mechanics , 1987 .
[14] Gene H. Golub,et al. Some History of the Conjugate Gradient and Lanczos Algorithms: 1948-1976 , 1989, SIAM Rev..
[15] P. Hood,et al. A numerical solution of the Navier-Stokes equations using the finite element technique , 1973 .
[16] Luc Tartar,et al. Topics in nonlinear analysis , 1978 .
[17] G. Golub,et al. Iterative solution of linear systems , 1991, Acta Numerica.
[18] O. Pironneau,et al. Error estimates for finite element method solution of the Stokes problem in the primitive variables , 1979 .
[19] R. Glowinski,et al. Numerical methods for the navier-stokes equations. Applications to the simulation of compressible and incompressible viscous flows , 1987 .
[20] Michel Fortin,et al. Mixed and Hybrid Finite Element Methods , 2011, Springer Series in Computational Mathematics.
[21] Roland Glowinski,et al. Erratum to: A numerical approach to the exact boundary controllability of the wave equation (I) Dirichlet controls: Description of the numerical methods , 1990 .
[22] Jean Leray,et al. Sur le mouvement d'un liquide visqueux emplissant l'espace , 1934 .
[23] J. Lions. Quelques méthodes de résolution de problèmes aux limites non linéaires , 1969 .
[24] Vivette Girault,et al. Finite Element Methods for Navier-Stokes Equations - Theory and Algorithms , 1986, Springer Series in Computational Mathematics.
[25] E. Zeidler. Nonlinear functional analysis and its applications , 1988 .
[26] Jean E. Roberts,et al. Mixed and hybrid methods , 1991 .
[27] Roland Glowinski,et al. A wave equation approach to the numerical solution of the Navier-Stokes equations for incompressible viscous flow , 1997 .
[28] A. Majda,et al. Rates of convergence for viscous splitting of the Navier-Stokes equations , 1981 .
[29] A. D. Young,et al. An Introduction to Fluid Mechanics , 1968 .
[30] R. Glowinski,et al. Exact and approximate controllability for distributed parameter systems , 1995, Acta Numerica.
[31] T. Taylor,et al. Computational methods for fluid flow , 1982 .
[32] G. Marchuk. Splitting and alternating direction methods , 1990 .
[33] T. A. Zang,et al. Spectral methods for fluid dynamics , 1987 .
[34] A. Chorin. Numerical solution of the Navier-Stokes equations , 1968 .
[35] Olivier Goyon,et al. High-Reynolds number solutions of Navier-Stokes equations using incremental unknowns , 1996 .
[36] R. Glowinski,et al. A distributed Lagrange multiplier/fictitious domain method for particulate flows , 1999 .
[37] P. Raviart,et al. Conforming and nonconforming finite element methods for solving the stationary Stokes equations I , 1973 .
[38] G. Marchuk. Methods of Numerical Mathematics , 1982 .
[39] Philippe G. Ciarlet,et al. The finite element method for elliptic problems , 2002, Classics in applied mathematics.
[40] T. Hughes,et al. A new finite element formulation for computational fluid dynamics: II. Beyond SUPG , 1986 .
[41] P. G. Ciarlet,et al. Basic error estimates for elliptic problems , 1991 .
[42] P. Kloucek,et al. Stability of the fractional step T-scheme for the nonstationary Navier-Stokes equations , 1994 .
[43] R. Glowinski,et al. A fictitious domain approach to the direct numerical simulation of incompressible viscous flow past moving rigid bodies: application to particulate flow , 2001 .
[44] Rolf Rannacher,et al. Numerical methods for the Navier-Stokes equations , 1994 .
[45] R. D. Murphy,et al. Iterative solution of nonlinear equations , 1994 .
[46] J. Marsden,et al. A mathematical introduction to fluid mechanics , 1979 .
[47] L. R. Scott,et al. The Mathematical Theory of Finite Element Methods , 1994 .
[48] E. Fernández-Cara,et al. The convergence of two numerical schemes for the Navier-Stokes equations , 1989 .
[49] 海老 豊,et al. F. Thomasset: Implementation of Finite Element Methods for Navier-Stokes Equations, Springer-Verlag, New York and Heidelberg, 1981, viii+162ページ, 9,270円 (Springer Series in Computational Physics). , 1983 .
[50] R. Glowinski,et al. Numerical Methods for Nonlinear Variational Problems , 1985 .
[51] O. Pironneau. Finite Element Methods for Fluids , 1990 .
[52] James M. Ortega,et al. Iterative solution of nonlinear equations in several variables , 2014, Computer science and applied mathematics.
[53] Yousef Saad,et al. Iterative methods for sparse linear systems , 2003 .
[54] J. Hiriart-Urruty,et al. Convex analysis and minimization algorithms , 1993 .
[55] G. Strang. On the Construction and Comparison of Difference Schemes , 1968 .
[56] J. Lions,et al. Équations Différentielles Opérationnelles Et Problèmes Aux Limites , 1961 .
[57] N. N. Yanenko,et al. The Method of Fractional Steps , 1971 .
[58] P. Raviart. Finite element methods and Navier-Stokes equations , 1979 .
[59] R. Schnabel,et al. A view of unconstrained optimization , 1989 .
[60] R. Glowinski,et al. Incompressible Computational Fluid Dynamics: On Some Finite Element Methods for the Numerical Simulation of Incompressible Viscous Flow , 1993 .
[61] Marcel Lesieur,et al. Turbulence in fluids , 1990 .
[62] J. Cahouet,et al. Some fast 3D finite element solvers for the generalized Stokes problem , 1988 .
[63] R. Temam. Sur l'approximation de la solution des équations de Navier-Stokes par la méthode des pas fractionnaires (II) , 1969 .
[64] Jacques Periaux,et al. A distributed Lagrange multiplier/fictitious domain method for the simulation of flow around moving rigid bodies: application to particulate flow , 2000 .
[65] François Thomasset,et al. Implementation of Finite Element Methods for Navier-Stokes Equations , 1981 .
[66] U. Ghia,et al. High-Re solutions for incompressible flow using the Navier-Stokes equations and a multigrid method , 1982 .
[67] R. Sani,et al. Incompressible Flow and the Finite Element Method, Volume 1, Advection-Diffusion and Isothermal Laminar Flow , 1998 .
[68] I. Ekeland,et al. Convex analysis and variational problems , 1976 .
[69] M. J. D. Powell,et al. Restart procedures for the conjugate gradient method , 1977, Math. Program..
[70] Randall J. LeVeque,et al. Numerical methods based on additive splittings for hyperbolic partial differential equations , 1981 .
[71] R. Glowinski,et al. Supercomputer solutions of partial differential equation problems in computational fluid dynamics and in control , 1989 .
[72] Jean Leray. Aspects de la mécanique théorique des fluides , 1994 .
[73] J. M. Thomas,et al. Introduction à l'analyse numérique des équations aux dérivées partielles , 1983 .
[74] A. Chorin. A Numerical Method for Solving Incompressible Viscous Flow Problems , 1997 .
[75] R. Hwang,et al. Effect of Reynolds number on the eddy structure in a lid-driven cavity , 1998 .
[76] G. Strang,et al. An Analysis of the Finite Element Method , 1974 .
[77] H. Kreiss,et al. Initial-Boundary Value Problems and the Navier-Stokes Equations , 2004 .
[78] T. Taylor,et al. A Pseudospectral method for solution of the three-dimensional incompressible Navier-Stokes equations , 1987 .
[79] Jean Leray,et al. Essai sur les mouvements plans d'un fluide visqueux que limitent des parois. , 1934 .
[80] E. Hopf,et al. Über die Anfangswertaufgabe für die hydrodynamischen Grundgleichungen. Erhard Schmidt zu seinem 75. Geburtstag gewidmet , 1950 .
[81] R. Glowinski,et al. Viscous Flow Simulation by Finite Element Methods and Related Numerical Techniques , 1985 .
[82] A General Convergence Result for Unconstrained Minimization Methods , 1972 .
[83] C. Fletcher. Computational techniques for fluid dynamics , 1992 .
[84] L. Quartapelle,et al. Numerical solution of the incompressible Navier-Stokes equations , 1993, International series of numerical mathematics.
[85] Fujima Shoichi,et al. Extension to three-dimensional problems of the upwind finite element scheme based on the choice of up- and downwind points , 1994 .
[86] M. J. D. Powell,et al. Some convergence properties of the conjugate gradient method , 1976, Math. Program..
[87] Jorge Nocedal,et al. Theory of algorithms for unconstrained optimization , 1992, Acta Numerica.
[88] S. Turek. a Comparative Study of Time-Stepping Techniques for the Incompressible Navier-Stokes Equations: from Fully Implicit Non-Linear Schemes to Semi-Implicit Projection Methods , 1996 .
[89] A. Quarteroni,et al. Numerical Approximation of Partial Differential Equations , 2008 .
[90] Jie Shen,et al. Hopf bifurcation of the unsteady regularized driven cavity flow , 1991 .
[91] Roger Temam,et al. On the theory and numerical analysis of the Navier-Stokes equations , 1973 .
[92] R. Glowinski. Finite element methods for incompressible viscous flow , 2003 .
[93] C. Kelley. Iterative Methods for Linear and Nonlinear Equations , 1987 .
[94] M. Hestenes,et al. Methods of conjugate gradients for solving linear systems , 1952 .
[95] Jim Douglas,et al. An absolutely stabilized finite element method for the stokes problem , 1989 .