A proof of concept for matchete: an automated tool for matching effective theories

[1]  M. Chala Constraints on anomalous dimensions from the positivity of the S matrix , 2023, Physical Review D.

[2]  D. Stolarski,et al.  Exploring the vacuum structure of gravitationally induced neutrino masses , 2022, Physical Review D.

[3]  A. E. Thomsen,et al.  Evanescent operators in one-loop matching computations , 2022, Journal of High Energy Physics.

[4]  C. Englert,et al.  Integrating out heavy scalars with modified equations of motion: Matching computation of dimension-eight SMEFT coefficients , 2022, Physical Review D.

[5]  Y. Liao,et al.  One-loop matching of scotogenic model onto standard model effective field theory up to dimension 7 , 2022, Journal of High Energy Physics.

[6]  Felix Wilsch Towards matching effective theories efficiently , 2022, 2207.10956.

[7]  D. Faroughy,et al.  HighPT: A tool for high-pT Drell-Yan tails beyond the standard model , 2022, Comput. Phys. Commun..

[8]  G. Guedes,et al.  A bridge to new physics: proposing new — and reviving old — explanations of aμ , 2022, Journal of High Energy Physics.

[9]  S. Dawson,et al.  Role of dimension-eight operators in an EFT for the 2HDM , 2022, Physical Review D.

[10]  A. Crivellin,et al.  Large tcZ as a sign of vectorlike quarks in light of the W. Altmannshofer,et al.  Dark matter effective field theory and an application to vector dark matter , 2022, Journal of High Energy Physics.

[12]  Shun Zhou,et al.  One-loop matching of the type-II seesaw model onto the Standard Model effective field theory , 2022, Journal of High Energy Physics.

[13]  Jiang-Hao Yu,et al.  Neutrino seesaw models at one-loop matching: discrimination by effective operators , 2022, Journal of High Energy Physics.

[14]  T. Ohlsson,et al.  One-Loop Matching Conditions in Neutrino Effective Theory , 2022, Nuclear Physics B.

[15]  J. Santiago,et al.  Matchmakereft: automated tree-level and one-loop matching , 2021, SciPost Physics.

[16]  F. Beaujean,et al.  EOS: a software for flavor physics phenomenology , 2021, The European Physical Journal C.

[17]  M. Chala,et al.  Positivity bounds in the standard model effective field theory beyond tree level , 2021, Physical Review D.

[18]  A. Dedes,et al.  Universal scalar leptoquark action for matching , 2021, Journal of High Energy Physics.

[19]  Shun Zhou,et al.  Complete one-loop matching of the type-I seesaw model onto the Standard Model effective field theory , 2021, Journal of High Energy Physics.

[20]  M. Neubert,et al.  ALP — SMEFT interference , 2021, Journal of High Energy Physics.

[21]  A. Djouadi,et al.  A complete effective field theory for dark matter , 2021, Journal of High Energy Physics.

[22]  M. Hoferichter,et al.  Consequences of chirally enhanced explanations of (g − 2)μ for h → μμ and Z → μμ , 2021, Journal of High Energy Physics.

[23]  Farvah Mahmoudi,et al.  MARTY - Modern ARtificial Theoretical phYsicist A C++ framework automating theoretical calculations Beyond the Standard Model , 2021, Comput. Phys. Commun..

[24]  S. Dittmaier,et al.  Integrating out heavy fields in the path integral using the background-field method: general formalism , 2021, The European Physical Journal C.

[25]  M. Neubert,et al.  The low-energy effective theory of axions and ALPs , 2020, Journal of High Energy Physics.

[26]  M. Chala,et al.  Running in the ALPs , 2020, The European Physical Journal C.

[27]  A. E. Thomsen,et al.  SuperTracer: a calculator of functional supertraces for one-loop EFT matching , 2020, Journal of High Energy Physics.

[28]  Xiaochuan Lu,et al.  STrEAMlining EFT Matching , 2020, SciPost Physics.

[29]  Xiaochuan Lu,et al.  Functional prescription for EFT matching , 2020, Journal of High Energy Physics.

[30]  J. Virto,et al.  DsixTools 2.0: the effective field theory toolkit , 2020, The European Physical Journal C.

[31]  Renato M. Fonseca,et al.  GroupMath: A Mathematica package for group theory calculations , 2020, Comput. Phys. Commun..

[32]  D. Marzocca,et al.  Low-energy phenomenology of scalar leptoquarks at one-loop accuracy , 2020, 2008.09548.

[33]  Peisi Huang,et al.  Integrating out new fermions at one loop , 2020, Journal of High Energy Physics.

[34]  S. Ellis,et al.  The fermionic universal one-loop effective action , 2020, Journal of High Energy Physics.

[35]  D. Marzocca,et al.  Matching scalar leptoquarks to the SMEFT at one loop , 2020, Journal of High Energy Physics.

[36]  U. Haisch,et al.  Singlet night in Feynman-ville: one-loop matching of a real scalar , 2020, 2003.05936.

[37]  M. Pierini,et al.  HEPfit: a code for the combination of indirect and direct constraints on high energy physics models , 2019, The European Physical Journal C.

[38]  P. Stoffer,et al.  Low-energy effective field theory below the electroweak scale: matching at one loop , 2019, Journal of High Energy Physics.

[39]  A. Voigt,et al.  Completing the scalar and fermionic universal one-loop effective action , 2019, Journal of High Energy Physics.

[40]  Giampiero Passarino,et al.  Computing Tools for the SMEFT. , 2019, 1910.11003.

[41]  A. Dedes,et al.  SmeftFR - Feynman rules generator for the Standard Model Effective Field Theory , 2019, Comput. Phys. Commun..

[42]  F. Maltoni,et al.  A Monte Carlo global analysis of the Standard Model Effective Field Theory: the top quark sector , 2019, Journal of High Energy Physics.

[43]  F. Maltoni,et al.  A Monte Carlo global analysis of the Standard Model Effective Field Theory: the top quark sector , 2019, Journal of High Energy Physics.

[44]  J. C. Criado BasisGen: automatic generation of operator bases , 2019, The European Physical Journal C.

[45]  D. Straub,et al.  : a Python package for the running and matching of Wilson coefficients above and below the electroweak scale , 2018, The European Physical Journal C.

[46]  M. Pérez-Victoria,et al.  Field redefinitions in effective theories at higher orders , 2018, Journal of High Energy Physics.

[47]  N. Craig,et al.  Complete one-loop matching for a singlet scalar in the Standard Model EFT , 2018, Journal of High Energy Physics.

[48]  David M. Straub,et al.  flavio: a Python package for flavour and precision phenomenology in the Standard Model and beyond , 2018, 1810.08132.

[49]  D. Straub,et al.  A global likelihood for precision constraints and flavour anomalies , 2018, The European Physical Journal C.

[50]  J. Chakrabortty,et al.  CoDEx: Wilson coefficient calculator connecting SMEFT to UV theory , 2018, The European Physical Journal C.

[51]  B. Gripaios,et al.  DEFT: a program for operators in EFT , 2018, Journal of High Energy Physics.

[52]  D. Straub,et al.  : a Python package for the running and matching of Wilson coefficients above and below the electroweak scale , 2018, The European Physical Journal C.

[53]  Yun Jiang,et al.  WCxf: An exchange format for Wilson coefficients beyond the Standard Model , 2017, Comput. Phys. Commun..

[54]  Peter Stoffer,et al.  Low-energy effective field theory below the electroweak scale: anomalous dimensions , 2017, Journal of High Energy Physics.

[55]  Juan C. Criado,et al.  MatchingTools: A Python library for symbolic effective field theory calculations , 2017, Comput. Phys. Commun..

[56]  Michael Trott,et al.  The SMEFTsim package, theory and tools , 2017, 1709.06492.

[57]  P. Stoffer,et al.  Low-energy effective field theory below the electroweak scale: operators and matching , 2017, Journal of High Energy Physics.

[58]  Tevong You,et al.  Extending the Universal One-Loop Effective Action: heavy-light coefficients , 2017, Journal of High Energy Physics.

[59]  Alejandro Celis,et al.  DsixTools: the standard model effective field theory toolkit , 2017, The European Physical Journal C.

[60]  L. Hofer,et al.  Loop effects of heavy new scalars and fermions in b → sμ+μ− , 2017, Journal of High Energy Physics.

[61]  R. Fonseca The Sym2Int program: going from symmetries to interactions , 2017, 1703.05221.

[62]  Zhengkang Zhang,et al.  Covariant diagrams for one-loop matching , 2016, 1610.00710.

[63]  L. Hofer,et al.  Loop effects of heavy new scalars and fermions in b → sμ+μ− , 2016, 1608.07832.

[64]  J. Fuentes-Martín,et al.  Integrating out heavy particles with functional methods: a simplified framework , 2016, 1607.02142.

[65]  A. Crivellin,et al.  Matching of gauge invariant dimension-six operators for b → s and b → c transitions , 2016, Journal of High Energy Physics.

[66]  Tevong You,et al.  Mixed heavy–light matching in the Universal One-Loop Effective Action , 2016, 1604.02445.

[67]  Hitoshi Murayama,et al.  One-loop matching and running with covariant derivative expansion , 2016, 1604.01019.

[68]  G. Passarino,et al.  Low energy behaviour of standard model extensions , 2016, 1603.03660.

[69]  J. Quevillon,et al.  The universal one-loop effective action , 2016, Journal of High Energy Physics.

[70]  Z. Kunszt,et al.  One-loop effective lagrangians after matching , 2016, 1602.00126.

[71]  H. Murayama,et al.  How to use the Standard Model effective field theory , 2016, Journal of High Energy Physics.

[72]  Jason Aebischer,et al.  Matching of gauge invariant dimension-six operators for b → s and b → c transitions , 2015, 1512.02830.

[73]  John Ellis,et al.  The universal one-loop effective action , 2015, 1512.03003.

[74]  H. Murayama,et al.  How to use the Standard Model effective field theory , 2014, 1412.1837.

[75]  Rodrigo Alonso,et al.  Renormalization group evolution of dimension-six baryon number violating operators , 2014, 1405.0486.

[76]  Michael Trott,et al.  Renormalization group evolution of the Standard Model dimension six operators III: gauge coupling dependence and phenomenology , 2013, Journal of High Energy Physics.

[77]  Michael Trott,et al.  Renormalization group evolution of the Standard Model dimension six operators II: Yukawa dependence , 2013, Journal of High Energy Physics.

[78]  R. Fonseca Renormalization in supersymmetric models , 2013, 1310.1296.

[79]  E. Jenkins,et al.  Renormalization group evolution of the standard model dimension six operators. I: formalism and λ dependence , 2013, Journal of High Energy Physics.

[80]  B. Jantzen Foundation and generalization of the expansion by regions , 2011, 1111.2589.

[81]  Claude Duhr,et al.  UFO - The Universal FeynRules Output , 2011, Comput. Phys. Commun..

[82]  M. Misiak,et al.  Dimension-six terms in the Standard Model Lagrangian , 2010, 1008.4884.

[83]  J. Stillwell,et al.  Symmetry , 2000, Am. Math. Mon..

[84]  M. Beneke,et al.  Asymptotic expansion of Feynman integrals near threshold , 1997, hep-ph/9711391.

[85]  S. Dittmaier,et al.  INTEGRATING OUT THE STANDARD HIGGS FIELD IN THE PATH INTEGRAL , 1995, hep-ph/9505266.

[86]  S. Dittmaier,et al.  Deriving nondecoupling effects of heavy fields from the path integral: A heavy Higgs field in an SU(2) gauge theory. , 1995, Physical review. D, Particles and fields.

[87]  R. Ball,et al.  Renormalizability of Effective Scalar Field Theory , 1993, hep-th/9310042.

[88]  C. Arzt Reduced effective lagrangians , 1993, hep-ph/9304230.

[89]  Oren Cheyette Effective action for the standard model with large Higgs mass , 1988 .

[90]  Chan,et al.  Derivative expansion for the one-loop effective actions with internal symmetry. , 1986, Physical review letters.

[91]  M. Gaillard The effective one-loop scalar lagrangian with derivative couplings , 1986 .

[92]  Cheyette,et al.  Derivative expansion of the effective action. , 1985, Physical review letters.

[93]  Fraser,et al.  Trouble with boson loops in Skyrmion physics. , 1985, Physical review. D, Particles and fields.

[94]  Fraser,et al.  Derivative expansions of fermion determinants: Anomaly-induced vertices, Goldstone-Wilczek currents, and Skyrme terms. , 1985, Physical review. D, Particles and fields.

[95]  Chan,et al.  Effective-action expansion in perturbation theory. , 1985, Physical review letters.

[96]  C. Fraser Calculation of higher derivative terms in the one-loop effective Lagrangian , 1985 .

[97]  I. Aitchison,et al.  Fermion Loop Contribution to Skyrmion Stability , 1984 .

[98]  Robert N. Cahn,et al.  Semi-Simple Lie Algebras and Their Representations , 1984 .

[99]  R. Kallosh,et al.  The Equivalence theorem and gauge invariance in renormalizable theories , 1972 .

[100]  P. Divakaran Equivalence theorems and point transformations in field theory , 1963 .

[101]  A. Salam,et al.  Change of variables and equivalence theorems in quantum field theories , 1961 .

[102]  J. Chisholm Change of variables in quantum field theories , 1961 .

[103]  C. Rogan,et al.  FlavBit: a GAMBIT module for computing flavour observables and likelihoods , 2017, The European Physical Journal C.

[104]  A. Salam,et al.  Equivalent Formulations of Massive Vector Field Theories , 1970 .