Acyclic edge coloring of planar graphs without a $$3$$3-cycle adjacent to a $$6$$6-cycle

An acyclic edge coloring of a graph $$G$$G is a proper edge coloring such that no bichromatic cycles are produced. The acyclic chromatic index $$a'(G)$$a′(G) of $$G$$G is the smallest integer $$k$$k such that $$G$$G has an acyclic edge coloring using $$k$$k colors. Fiamč ik (Math Slovaca 28:139–145, 1978) and later Alon et al. (J Graph Theory 37:157–167, 2001) conjectured that $$a'(G)\le \Delta +2$$a′(G)≤Δ+2 for any simple graph $$G$$G with maximum degree $$\Delta $$Δ. In this paper, we confirm this conjecture for planar graphs without a $$3$$3-cycle adjacent to a $$6$$6-cycle.

[1]  Yingqian Wang,et al.  Acyclic edge coloring of sparse graphs , 2012, Discret. Math..

[2]  Manu Basavaraju,et al.  Acyclic edge coloring of subcubic graphs , 2008, Discret. Math..

[3]  Aldo Procacci,et al.  Improved bounds on coloring of graphs , 2010, Eur. J. Comb..

[4]  Aline Parreau,et al.  Acyclic edge-coloring using entropy compression , 2012, Eur. J. Comb..

[5]  San Skulrattanakulchai,et al.  Acyclic colorings of subcubic graphs , 2004, Inf. Process. Lett..

[6]  Wei-Fan Wang,et al.  Acyclic chromatic indices of planar graphs with girth at least five , 2010, Journal of Combinatorial Optimization.

[7]  Wei-Fan Wang,et al.  Acyclic edge coloring of planar graphs without 4-cycles , 2012, Journal of Combinatorial Optimization.

[8]  Manu Basavaraju,et al.  Acyclic Edge-Coloring of Planar Graphs , 2009, SIAM J. Discret. Math..

[9]  Wei-Fan Wang,et al.  Acyclic edge coloring of planar graphs without 4-cycles , 2013, J. Comb. Optim..

[10]  Bruce A. Reed,et al.  Further algorithmic aspects of the local lemma , 1998, STOC '98.

[11]  Noga Alon,et al.  Acyclic edge colorings of graphs , 2001 .

[12]  Wei-Fan Wang,et al.  A new upper bound on the acyclic chromatic indices of planar graphs , 2012, Eur. J. Comb..

[13]  Bruce A. Reed,et al.  Acyclic Coloring of Graphs , 1991, Random Struct. Algorithms.

[14]  Manu Basavaraju,et al.  Acyclic edge coloring of graphs with maximum degree 4 , 2009, J. Graph Theory.

[15]  Wei-Fan Wang,et al.  Every 4-regular graph is acyclically edge-6-colorable , 2012, ArXiv.

[16]  Jianfeng Hou,et al.  Acyclic edge coloring of sparse graphs , 2012, ArXiv.