Experimental results and future prospects for a nonpulsatile cardiac prosthesis

Replacing the heart function by means of a nonpulsatile blood pump is a great challenge to nature, which evolved pulsatile blood circulation. Some years ago, we hypothesized that mammalian physiology was capable of adapting to chronic nonpulsatile blood flow and maintaining normal organ function. The methodology of complete circulatory replacement with nonpulsatile flow has been established in awake calf experiments in our institution. To date, 5 animals have lived with nonpulsatile blood perfusion with near normal physiology for up to 3 months. Our studies on nonpulsatile biventricular animals have shown that immediately following surgery there is an adaptation phase which lasts approximately 7 to 10 days. This phase is characterized by increased total systemic vascular resistance (SVR), which appears to correlate with an increase in the circulating catecholamines. After this phase, these animals showed normal values of SVR, renal, biochemical, and endocrine function. Our data show that nonpulsatile blood flow is not a limiting factor to maintain mammalian life.RésuméRemplacer la fonction cardiaque par une pompe à débit continu est un défi à la nature, la circulation normale étant de type pulsatif. Il y a quelques années déjà nous avons émis l'hypothèse que les mammifères étaient capables de s'adapter à une circulation à débit continu sans alterations physiologiques. Dans notre institution, nous avons expérimentalement mis au point chez le veau un appareillage assurant sous débit continu le remplacement de la circulation sanguine. A ce jour cinq veaux soumis à cette expérimentation ont vécu plus de trois mois. Nos études nous ont montré que l'implantation de cet appareillage était suivie d'une phase d'adaptation d'une durée de 7–10 jours. Cette phase est caractérisée par une élévation de la résistance vasculaire systémique qui paraît être en corrélation avec une augmentation des catécholamines circulantes. Après cette phase la résistance vasculaire systémique est normale comme sont normales les fonctions rénales biochimiques et endocriniennes. Notre expérience montre qu'un appareil assurant la circulation sanguine sous un débit continu représente pas un facteur qui limite le maintien de la vie chez les mammifères.ResumenEl reemplazo de la función cardiaca por medio de una bomba sanguínea no pulsátil representa un verdadero desafío para la naturaleza, la cual ha desarrollado, a través de la evolución biológica, el sistema de circulación sanguíneo pulsátil. Hace algunos años elaboramos la hipótesis de que la fisiología mamífera era capaz de adaptarse a un flujo sanguíneo crónico no pulsátil y mantener una función orgánica normal. La metodología del reemplazo circulatorio por medio del flujo no pulsátil ha sido establecida en experimentos con terneros no anestesiados en nuestra institución. Hasta la fecha, cinco animales han vivido con perfusión sanguínea no pulsátil y fisiología casi normal hasta por tres meses. Nuestros estudios en animales biventriculares no pulsátiles han demostrado que inmediatamente después de la cirugía se produce una fase de adaptación que dura aproximadamente 7 a 10 días. Esta fase se caracteriza por un aumento en la resistencia vascular sistémica total (RVS), la cual parece estar correlacionada con un aumento en las catecolaminas circulantes. A continuation de esta fase los animales exhiben valores normales de RVS y función renal, bioquímica y endocrina normales. Nuestros hallazgos muestran que el flujo sanguíneo no pulsátil no es un factor limitante para el mantenimiento de la vida mamífera.

[1]  H Harasaki,et al.  Comparison of hemodynamic changes in a chronic nonpulsatile biventricular bypass (BVB) and total artificial heart (TAH). , 1980, Transactions - American Society for Artificial Internal Organs.

[2]  D. Murphy,et al.  Does pulsatile flow influence the incidence of postoperative hypertension? , 1979, The Annals of thoracic surgery.

[3]  Wesolowski Sa,et al.  Perfusion of the pulmonary circulation by nonpulsatile flow. , 1953 .

[4]  F. Belzer,et al.  Etiology of Rising Perfusion Pressure in Isolated Organ Perfusion , 1968, Annals of surgery.

[5]  H Harasaki,et al.  Physiopathological studies of nonpulsatile blood flow in chronic models. , 1983, Transactions - American Society for Artificial Internal Organs.

[6]  H. Harasaki,et al.  NONPULSATILE BIVENTRICULAR BYPASS DURING CHRONIC VENTRICULAR FIBRILLATION , 1983 .

[7]  H. Harasaki,et al.  Chronic nonpulsatile blood flow. , 1982, Transactions - American Society for Artificial Internal Organs.

[8]  M. Buckley,et al.  Adrenocortical hormone levels during cardiopulmonary bypass with and without pulsatile flow. , 1983, The Journal of thoracic and cardiovascular surgery.

[9]  J. Connolly,et al.  Comparison of nonpulsatile and pulsatile extracorporeal circulation on renal tissue perfusion. , 1972, Chest.

[10]  K. Nakayama,et al.  HIGH-AMPLITUDE PULSATILE PUMP IN EXTRACORPOREAL CIRCULATION WITH PARTICULAR REFERENCE TO HEMODYNAMICS. , 1963, Surgery.

[11]  L H Edmunds,et al.  Organ blood flow during pulsatile cardiopulmonary bypass. , 1974, Journal of applied physiology.

[12]  E. Bernstein,et al.  Twenty‐four Hour Left Ventricular BYpass with a Centrifugal Blood Pump , 1975, Annals of Surgery.

[13]  R Kiraly,et al.  Totally implantable left ventricular assist device for human application. , 1980, Transactions - American Society for Artificial Internal Organs.

[14]  E. Starling On the Absorption of Fluids from the Connective Tissue Spaces , 1896, The Journal of physiology.

[15]  R. E. Wood,et al.  Metabolic comparison of a new pulsatile pump and a roller pump for cardiopulmonary bypass. , 1969, The Journal of thoracic and cardiovascular surgery.

[16]  H. Harasaki,et al.  Comparison of osmotic and body fluid balance in chronic nonpulsatile biventricular bypass (NPBVB) and total artificial heart (TAH) experiments. , 1984, Transactions - American Society for Artificial Internal Organs.

[17]  V. Gott,et al.  Improved organ function during cardiac bypass with a roller pump modified to deliver pulsatile flow. , 1969, The Journal of thoracic and cardiovascular surgery.

[18]  H Harasaki,et al.  Chronic nonpulsatile blood flow in an alive, awake animal 34-day survival. , 1980, Transactions - American Society for Artificial Internal Organs.

[19]  R Kiraly,et al.  Promising results with a new textured surface intrathoracic variable volume device for LVAS. , 1981, Transactions - American Society for Artificial Internal Organs.

[20]  F. Fontan,et al.  Surgical repair of tricuspid atresia , 1971, Thorax.

[21]  R. Deterling,et al.  Hemodynamic effects of pulsatile and nonpulsatile flow. , 1966, Archives of surgery.

[22]  E F Bernstein,et al.  Prolonged pulsatile and nonpulsatile LV bypass with a centrifugal pump. , 1976, Transactions - American Society for Artificial Internal Organs.

[23]  R. Deterling,et al.  The physiologic role fo pulsatile and nonpulsatile blood flow. 3. Effects of unilateral renal artery depulsation. , 1968, Archives of surgery.

[24]  L. Sauvage,et al.  Extracorporeal circulation: the role of the pulse in maintenance of the systemic circulation during heart-lung by-pass. , 1955, Surgery.

[25]  W. H. Burns,et al.  PULSATILE AND NONPULSATILE BLOOD FLOW. , 1965, JAMA.

[26]  J. Moss,et al.  Attenuation of the Stress Response to Cardiopulmonary Bypass by the Addition of Pulsatile Flow , 1981, Circulation.

[27]  R Kiraly,et al.  Initial results with three different electrically driven left ventricular assist systems (LVAS). , 1981, Transactions - American Society for Artificial Internal Organs.

[28]  E. Bernstein A Centrifugal Pump for Circulatory Assistance , 1979 .

[29]  J. Straker,et al.  Hemodynamic, metabolic, and hematologic effects of pulsatile cardiopulmonary bypass. , 1974, The Journal of thoracic and cardiovascular surgery.

[30]  P. Hickey,et al.  Pulsatile and nonpulsatile cardiopulmonary bypass: review of a counterproductive controversy. , 1983, The Annals of thoracic surgery.

[31]  R. Dilley,et al.  Prolonged pulseless perfusion in unanesthetized calves. , 1976, Archives of surgery.

[32]  G. Nicolaysen,et al.  Pulmonary O2 transfer during pulsatile and non-pulsatile perfusion. , 1980, Acta physiologica Scandinavica.

[33]  A. Furness,et al.  To pulse or not to pulse. , 1980, The Annals of thoracic surgery.

[34]  R B Shepard,et al.  Relation of pulsatile flow to oxygen consumption and other variables during cardiopulmonary bypass. , 1969, The Journal of thoracic and cardiovascular surgery.

[35]  R Kiraly,et al.  Comparative evaluation of nonpulsatile and pulsatile cardiac prostheses. , 1980, Transactions - American Society for Artificial Internal Organs.

[36]  C. Mavroudis,et al.  To pulse or not to pulse. , 1978, The Annals of thoracic surgery.

[37]  K. Taylor,et al.  The Cortisol Response during Heart‐Lung Bypass , 1976, Circulation.

[38]  R. Deterling,et al.  The physiologic role of pulsatile and nonpulsatile blood flow. II. Effects on renal function. , 1967, Archives of surgery.

[39]  H. Harasaki,et al.  Hemodynamic response to exercise during chronic ventricular fibrillation and nonpulsatile biventricular bypass (BVB). , 1981, Transactions - American Society for Artificial Internal Organs.

[40]  D. R. Scott,et al.  A compact, low hemolysis, non-thrombogenic system for non-thoracotomy prolonged left ventricular bypass. , 1974, Transactions - American Society for Artificial Internal Organs.