Tribes of Cubic Partial Cubes

Partial cubes are graphs isometrically embeddable into hypercubes. Three infinite families and a few sporadic examples of cubic partial cubes are known. The concept of a tribe is introduced as means to systematize the known examples and establish relations among them. Efficient methods of computation of tribes are developed and several concrete tribes, that include known, as well as new cubic partial cubes, are computed by hand and with the use of a computer.

[1]  Paul M. Weischel Distance regular subgraphs of a cube , 1992 .

[2]  Katharina T. Huber,et al.  On the number of vertices and edges of the Buneman graph , 1997 .

[3]  Sergei Ovchinnikov,et al.  Hyperplane arrangements in preference modeling , 2005 .

[4]  Sergei Ovchinnikov,et al.  Media theory , 2002, Discret. Appl. Math..

[5]  Bojan Mohar,et al.  Labeling of Benzenoid Systems which Reflects the Vertex-Distance Relations , 1995, J. Chem. Inf. Comput. Sci..

[6]  Michel Deza,et al.  Scale-isometric polytopal graphs in hypercubes and cubic lattices - polytopes in hypercubes and Zn , 2004 .

[7]  Eva Gedeonová Constructions of S-lattices , 1990 .

[8]  Martyn Mulder,et al.  The structure of median graphs , 1978, Discret. Math..

[9]  Sandi Klavzar,et al.  Applications of isometric embeddings to chemical graphs , 1998, Discrete Mathematical Chemistry.

[10]  Bojan Mohar,et al.  Cubic inflation, mirror graphs, regular maps, and partial cubes , 2004, Eur. J. Comb..

[11]  H. M. Mulder The interval function of a graph , 1980 .

[12]  Sandi Klavzar,et al.  Partial Cubes and Crossing Graphs , 2002, SIAM J. Discret. Math..

[13]  Sandi Klavzar,et al.  On cubic and edge-critical isometric subgraphs of hypercubes , 2003, Australas. J Comb..

[14]  Elke Wilkeit,et al.  Isometric embeddings in Hamming graphs , 1990, J. Comb. Theory, Ser. B.

[15]  Branko Grünbaum Arrangements of Hyperplanes , 2003 .

[16]  W. Imrich,et al.  Product Graphs: Structure and Recognition , 2000 .

[17]  Komei Fukuda,et al.  Antipodal graphs and oriented matroids , 1993, Discret. Math..

[18]  David Eppstein Cubic Partial Cubes from Simplicial Arrangements , 2006, Electron. J. Comb..

[19]  Gordon F. Royle,et al.  Algebraic Graph Theory , 2001, Graduate texts in mathematics.

[20]  Sergei Ovchinnikov Media theory: Representations and examples , 2008, Discret. Appl. Math..

[21]  Hans-Jürgen Bandelt,et al.  Superextensions and the depth of median graphs , 1991, J. Comb. Theory, Ser. A.

[22]  Michel Deza,et al.  Geometry of cuts and metrics , 2009, Algorithms and combinatorics.

[23]  Michel Deza,et al.  Isometric embeddings of Archimedean Wythoff polytopes into hypercubes and half-cubes , 2004 .

[24]  Cemi,et al.  A Zoo of L 1 -embeddable Polytopal Graphs , 1996 .

[25]  V. Moulton,et al.  Neighbor-net: an agglomerative method for the construction of phylogenetic networks. , 2002, Molecular biology and evolution.

[26]  B. Grünbaum Arrangements and Spreads , 1972 .

[27]  Peter Winkler,et al.  Isometric embedding in products of complete graphs , 1984, Discret. Appl. Math..

[28]  David Avis,et al.  Hypermetric Spaces and the Hamming Cone , 1981, Canadian Journal of Mathematics.

[29]  Michel Deza,et al.  Graphs 4 n that are isometrically embeddable in hypercubes , 2008 .

[30]  Sandi Klavzar,et al.  Partial cubes as subdivision graphs and as generalized Petersen graphs , 2003, Discret. Math..

[31]  David Eppstein The lattice dimension of a graph , 2005, Eur. J. Comb..

[32]  Ronald L. Graham,et al.  On the addressing problem for loop switching , 1971 .

[33]  Vo D. Chepoi,et al.  Isometric subgraphs of Hamming graphs and d-convexity , 1988 .

[34]  Carsten Thomassen,et al.  Graphs on Surfaces , 2001, Johns Hopkins series in the mathematical sciences.

[35]  Wilfried Imrich,et al.  Median Graphs and Triangle-Free Graphs , 1999, SIAM J. Discret. Math..

[36]  D. Djoković Distance-preserving subgraphs of hypercubes , 1973 .