Simple Quantitative Tests to Validate Sampling from Thermodynamic Ensembles.

It is often difficult to quantitatively determine if a new molecular simulation algorithm or software properly implements sampling of the desired thermodynamic ensemble. We present some simple statistical analysis procedures to allow sensitive determination of whether the desired thermodynamic ensemble is properly sampled. These procedures use paired simulations to cancel out system dependent densities of state and directly test the extent to which the Boltzmann distribution associated with the ensemble (usually canonical, isobaric-isothermal, or grand canonical) is satisfied. We demonstrate the utility of these tests for model systems and for molecular dynamics simulations in a range of situations and describe an implementation of the tests designed for end users.

[1]  Donald Geman,et al.  Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images , 1984 .

[2]  Michael R. Shirts,et al.  Equilibrium free energies from nonequilibrium measurements using maximum-likelihood methods. , 2003, Physical review letters.

[3]  M. Tuckerman,et al.  A Liouville-operator derived measure-preserving integrator for molecular dynamics simulations in the isothermal–isobaric ensemble , 2006 .

[4]  Mark E. Tuckerman,et al.  Explicit reversible integrators for extended systems dynamics , 1996 .

[5]  S. Nosé,et al.  Constant pressure molecular dynamics for molecular systems , 1983 .

[6]  Wilfred F van Gunsteren,et al.  On the calculation of velocity-dependent properties in molecular dynamics simulations using the leapfrog integration algorithm. , 2007, The Journal of chemical physics.

[7]  J. Anderson Separate sample logistic discrimination , 1972 .

[8]  Daniel J. Sindhikara,et al.  Exchange frequency in replica exchange molecular dynamics. , 2008, The Journal of chemical physics.

[9]  M. Parrinello,et al.  Canonical sampling through velocity rescaling. , 2007, The Journal of chemical physics.

[10]  T. W. Anderson,et al.  Asymptotic Theory of Certain "Goodness of Fit" Criteria Based on Stochastic Processes , 1952 .

[11]  R. Moeckel,et al.  Non-Ergodicity of the Nosé–Hoover Thermostatted Harmonic Oscillator , 2005, math/0511178.

[12]  H. C. Andersen Molecular dynamics simulations at constant pressure and/or temperature , 1980 .

[13]  Michael R. Shirts,et al.  Statistically optimal analysis of samples from multiple equilibrium states. , 2008, The Journal of chemical physics.

[14]  Tetsuya Morishita,et al.  Fluctuation formulas in molecular-dynamics simulations with the weak coupling heat bath , 2000 .

[15]  R. Moeckel,et al.  Non-ergodicity of Nosé–Hoover dynamics , 2008, 0812.3320.

[16]  Michael R Shirts,et al.  A Benchmark Test Set for Alchemical Free Energy Transformations and Its Use to Quantify Error in Common Free Energy Methods. , 2011, Journal of chemical theory and computation.

[17]  Hoover,et al.  Canonical dynamics: Equilibrium phase-space distributions. , 1985, Physical review. A, General physics.

[18]  H. Berendsen,et al.  Molecular dynamics with coupling to an external bath , 1984 .

[19]  M. Parrinello,et al.  Polymorphic transitions in single crystals: A new molecular dynamics method , 1981 .

[20]  V. Pande,et al.  Multiplexed-replica exchange molecular dynamics method for protein folding simulation. , 2003, Biophysical journal.

[21]  P. Kollman,et al.  Settle: An analytical version of the SHAKE and RATTLE algorithm for rigid water models , 1992 .

[22]  A. Lemak,et al.  On The Berendsen Thermostat , 1994 .

[23]  S. Harvey,et al.  The flying ice cube: Velocity rescaling in molecular dynamics leads to violation of energy equipartition , 1998, J. Comput. Chem..

[24]  H. C. Andersen Rattle: A “velocity” version of the shake algorithm for molecular dynamics calculations , 1983 .

[25]  D. Nicholson,et al.  Grand ensemble Monte-Carlo studies of physical adsorption , 1976 .

[26]  B. Brooks,et al.  An analysis of the accuracy of Langevin and molecular dynamics algorithms , 1988 .