Partial Shape Matching of 3D Models Based on the Laplace-Beltrami Operator Eigenfunction

The comparison and matching based on partial description of the 3D model is the current focus of study in the shape analysis. The partial description based on the eigenfunction of the Laplace-Beltrami operator is an important way. A large number of eigenfunction values of any point on the surface of the model form a eigenvector; based on this vector, K-means clustering method will be used to query the model which is divided into several regions; for each region, based on the Hungarian method which is used in the solving of optimal assignment problem, search a corresponding region in the compared model, so that achieving the partial matching between the two models.

[1]  Ron Kimmel,et al.  Generalized multidimensional scaling: A framework for isometry-invariant partial surface matching , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[2]  Ayoub Al-Hamadi,et al.  A Novel Method for 3D Face Detection and Normalization , 2007, J. Multim..

[3]  Radu Horaud,et al.  Inexact Matching of Large and Sparse Graphs Using Laplacian Eigenvectors , 2009, GbRPR.

[4]  Mikhail Belkin,et al.  Laplacian Eigenmaps for Dimensionality Reduction and Data Representation , 2003, Neural Computation.

[5]  Jing Hua,et al.  Salient spectral geometric features for shape matching and retrieval , 2009, The Visual Computer.

[6]  Guillermo Sapiro,et al.  A Theoretical and Computational Framework for Isometry Invariant Recognition of Point Cloud Data , 2005, Found. Comput. Math..

[7]  David Wishart,et al.  256 NOTE: An Algorithm for Hierarchical Classifications , 1969 .

[8]  H. Seidel,et al.  Isometric registration of ambiguous and partial data , 2009, 2009 IEEE Conference on Computer Vision and Pattern Recognition.

[9]  Ross T. Whitaker,et al.  Partitioning 3D Surface Meshes Using Watershed Segmentation , 1999, IEEE Trans. Vis. Comput. Graph..

[10]  Hans-Peter Seidel,et al.  Isometric registration of ambiguous and partial data , 2009, CVPR.

[11]  Irving Biederman,et al.  Visual object recognition , 1993 .

[12]  Ming Ouhyoung,et al.  On Visual Similarity Based 3D Model Retrieval , 2003, Comput. Graph. Forum.

[13]  Ron Kimmel,et al.  On Bending Invariant Signatures for Surfaces , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[14]  Ayellet Tal,et al.  Metamorphosis of Polyhedral Surfaces using Decomposition , 2002, Comput. Graph. Forum.

[15]  Mongi A. Abidi,et al.  Perception-based 3D triangle mesh segmentation using fast marching watersheds , 2003, 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2003. Proceedings..

[16]  Mikhael Gromov Structures métriques pour les variétés riemanniennes , 1981 .

[17]  Jean Serra,et al.  Image Analysis and Mathematical Morphology , 1983 .

[18]  Karthik Ramani,et al.  Developing an engineering shape benchmark for CAD models , 2006, Comput. Aided Des..

[19]  I. Biederman Recognition-by-components: a theory of human image understanding. , 1987, Psychological review.

[20]  Michael Garland,et al.  Hierarchical face clustering on polygonal surfaces , 2001, I3D '01.

[21]  Radu Horaud,et al.  Articulated shape matching using Laplacian eigenfunctions and unsupervised point registration , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[22]  Leonidas J. Guibas,et al.  Global Intrinsic Symmetries of Shapes , 2008, Comput. Graph. Forum.

[23]  J. A. Hartigan,et al.  A k-means clustering algorithm , 1979 .

[24]  Matthias Zwicker,et al.  Automatic Registration for Articulated Shapes , 2008, Comput. Graph. Forum.

[25]  Hao Zhang,et al.  Non-Rigid Spectral Correspondence of Triangle Meshes , 2007, Int. J. Shape Model..

[26]  Leonidas J. Guibas,et al.  Non-Rigid Registration Under Isometric Deformations , 2008 .

[27]  Marc Rioux,et al.  Invariant Robust 3-D Face Recognition based on the Hilbert Transform in Spectral Space , 2006, J. Multim..

[28]  T. Funkhouser,et al.  Möbius voting for surface correspondence , 2009, SIGGRAPH 2009.

[29]  Facundo Mémoli,et al.  Eurographics Symposium on Point-based Graphics (2007) on the Use of Gromov-hausdorff Distances for Shape Comparison , 2022 .

[30]  Konstantin Mischaikow,et al.  Feature-based surface parameterization and texture mapping , 2005, TOGS.

[31]  Tiow Seng Tan,et al.  Decomposing polygon meshes for interactive applications , 2001, I3D '01.

[32]  Remco C. Veltkamp,et al.  A Survey of Content Based 3D Shape Retrieval Methods , 2004, SMI.

[33]  Raif M. Rustamov,et al.  Laplace-Beltrami eigenfunctions for deformation invariant shape representation , 2007 .

[34]  Daniel Cohen-Or,et al.  Deformation‐Driven Shape Correspondence , 2008, Comput. Graph. Forum.

[35]  T. Möller,et al.  An Investigation of the Spectral Robustness of Mesh Laplacians , 2005 .

[36]  Martial Hebert,et al.  A spectral technique for correspondence problems using pairwise constraints , 2005, Tenth IEEE International Conference on Computer Vision (ICCV'05) Volume 1.

[37]  Ayellet Tal,et al.  Hierarchical mesh decomposition using fuzzy clustering and cuts , 2003, ACM Trans. Graph..

[38]  Niklas Peinecke,et al.  Laplace-Beltrami spectra as 'Shape-DNA' of surfaces and solids , 2006, Comput. Aided Des..

[39]  Ariel Shamir A formulation of boundary mesh segmentation , 2004, Proceedings. 2nd International Symposium on 3D Data Processing, Visualization and Transmission, 2004. 3DPVT 2004..

[40]  Alexander M. Bronstein,et al.  Symmetries of non-rigid shapes , 2007, 2007 IEEE 11th International Conference on Computer Vision.

[41]  Remco C. Veltkamp,et al.  A survey of content based 3D shape retrieval methods , 2004, Proceedings Shape Modeling Applications, 2004..

[42]  Sebastian Thrun,et al.  The Correlated Correspondence Algorithm for Unsupervised Registration of Nonrigid Surfaces , 2004, NIPS.

[43]  Renaud Keriven,et al.  Non-rigid Shape Matching Using Geometry and Photometry , 2009, ACCV.

[44]  R. Horaud,et al.  Surface feature detection and description with applications to mesh matching , 2009, 2009 IEEE Conference on Computer Vision and Pattern Recognition.