Peskun-Tierney ordering for Markov chain and process Monte Carlo: beyond the reversible scenario
暂无分享,去创建一个
[1] N. Metropolis,et al. Equation of State Calculations by Fast Computing Machines , 1953, Resonance.
[2] W. K. Hastings,et al. Monte Carlo Sampling Methods Using Markov Chains and Their Applications , 1970 .
[3] P. Peskun,et al. Optimum Monte-Carlo sampling using Markov chains , 1973 .
[4] J. Voigt. On the perturbation theory for strongly continuous semigroups , 1977 .
[5] N. Maigret. Théorème de limite centrale fonctionnel pour une chaîne de Markov récurrente au sens de Harris et positive , 1978 .
[6] A. Kennedy,et al. Hybrid Monte Carlo , 1988 .
[7] S. Caracciolo,et al. Nonlocal Monte Carlo algorithm for self-avoiding walks with fixed endpoints , 1990 .
[8] A. Horowitz. A generalized guided Monte Carlo algorithm , 1991 .
[9] M.H.A. Davis,et al. Markov Models & Optimization , 1993 .
[10] Jun S. Liu. Peskun's theorem and a modified discrete-state Gibbs sampler , 1996 .
[11] Sean P. Meyn,et al. A Liapounov bound for solutions of the Poisson equation , 1996 .
[12] Paul Gustafson,et al. A guided walk Metropolis algorithm , 1998, Stat. Comput..
[13] J. Lamb,et al. Time-reversal symmetry in dynamical systems: a survey , 1998 .
[14] L. Tierney. A note on Metropolis-Hastings kernels for general state spaces , 1998 .
[15] W. Wefelmeyer,et al. Information bounds for Gibbs samplers , 1998 .
[16] D. Ceperley,et al. The penalty method for random walks with uncertain energies , 1998, physics/9812035.
[17] Radford M. Neal,et al. ANALYSIS OF A NONREVERSIBLE MARKOV CHAIN SAMPLER , 2000 .
[18] Antonietta Mira,et al. Ordering and Improving the Performance of Monte Carlo Markov Chains , 2001 .
[19] Radford M. Neal. Improving Asymptotic Variance of MCMC Estimators: Non-reversible Chains are Better , 2004, math/0407281.
[20] S. Ethier,et al. Markov Processes: Characterization and Convergence , 2005 .
[21] Michael L. Overton,et al. Optimizing the asymptotic convergence rate of the Diaconis-Holmes-Neal sampler , 2007, Adv. Appl. Math..
[22] Michael Chertkov,et al. Irreversible Monte Carlo Algorithms for Efficient Sampling , 2008, ArXiv.
[23] Antonietta Mira,et al. AN EXTENSION OF PESKUN AND TIERNEY ORDERINGS TO CONTINUOUS TIME MARKOV CHAINS , 2008 .
[24] J. Hobert,et al. A theoretical comparison of the data augmentation, marginal augmentation and PX-DA algorithms , 2008, 0804.0671.
[25] A. Faggionato,et al. Non-equilibrium Thermodynamics of Piecewise Deterministic Markov Processes , 2009 .
[26] G. Roberts,et al. CLTs and Asymptotic Variance of Time-Sampled Markov Chains , 2011, 1102.2171.
[27] A. Doucet,et al. Efficient implementation of Markov chain Monte Carlo when using an unbiased likelihood estimator , 2012, 1210.1871.
[28] E A J F Peters,et al. Rejection-free Monte Carlo sampling for general potentials. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.
[29] N. Pillai,et al. A Function Space HMC Algorithm With Second Order Langevin Diffusion Limit , 2013, 1308.0543.
[30] K. Hukushima,et al. An irreversible Markov-chain Monte Carlo method with skew detailed balance conditions , 2013 .
[31] R. Douc,et al. Comparison of asymptotic variances of inhomogeneous Markov chains with application to Markov chain Monte Carlo methods , 2013, 1307.3719.
[32] J. M. Sanz-Serna,et al. Compressible generalized hybrid Monte Carlo. , 2014, The Journal of chemical physics.
[33] Jascha Sohl-Dickstein,et al. Hamiltonian Monte Carlo Without Detailed Balance , 2014, ICML.
[34] Ryan O'Donnell,et al. Analysis of Boolean Functions , 2014, ArXiv.
[35] Marija Vucelja. Lifting -- A nonreversible Markov chain Monte Carlo Algorithm , 2014 .
[36] Gareth O. Roberts,et al. Minimising MCMC variance via diffusion limits, with an application to simulated tempering , 2014 .
[37] Christophe Andrieu,et al. Establishing some order amongst exact approximations of MCMCs , 2014, 1404.6909.
[38] J. Rosenthal,et al. Surprising Convergence Properties of Some Simple Gibbs Samplers under Various Scans , 2015 .
[39] Jesús María Sanz-Serna,et al. Extra Chance Generalized Hybrid Monte Carlo , 2014, J. Comput. Phys..
[40] Spectral Bounds for Certain Two-Factor Non-Reversible MCMC Algorithms , 2015 .
[41] G. Roberts,et al. A piecewise deterministic scaling limit of Lifted Metropolis-Hastings in the Curie-Weiss model , 2015, 1509.00302.
[42] C. Andrieu,et al. Convergence properties of pseudo-marginal Markov chain Monte Carlo algorithms , 2012, 1210.1484.
[43] J. M. Sanz-Serna,et al. Randomized Hamiltonian Monte Carlo , 2015, 1511.09382.
[44] A. Doucet,et al. The Bouncy Particle Sampler: A Nonreversible Rejection-Free Markov Chain Monte Carlo Method , 2015, 1510.02451.
[45] Koji Hukushima,et al. Eigenvalue analysis of an irreversible random walk with skew detailed balance conditions. , 2015, Physical review. E.
[46] C. Andrieu. On random- and systematic-scan samplers , 2016 .
[47] Michela Ottobre,et al. Markov Chain Monte Carlo and Irreversibility , 2016 .
[48] Konstantinos Spiliopoulos,et al. Improving the Convergence of Reversible Samplers , 2016 .
[49] Anthony Lee,et al. Pseudo‐marginal Metropolis‐Hastings sampling using averages of unbiased estimators , 2017 .
[50] A. Duncan,et al. Limit theorems for the zig-zag process , 2016, Advances in Applied Probability.
[51] Aaron Smith,et al. The use of a single pseudo-sample in approximate Bayesian computation , 2014, Stat. Comput..
[52] Generalized and hybrid Metropolis-Hastings overdamped Langevin algorithms , 2017, 1701.05833.
[53] Paul Fearnhead,et al. Piecewise Deterministic Markov Processes for Continuous-Time Monte Carlo , 2016, Statistical Science.
[54] P. Fearnhead,et al. The Zig-Zag process and super-efficient sampling for Bayesian analysis of big data , 2016, The Annals of Statistics.
[55] S. Lunel,et al. Spectral analysis of the zigzag process , 2019, Annales de l'Institut Henri Poincaré, Probabilités et Statistiques.
[56] Alain Durmus,et al. Piecewise deterministic Markov processes and their invariant measures , 2018, Annales de l'Institut Henri Poincaré, Probabilités et Statistiques.
[57] Christophe Andrieu,et al. Hypocoercivity of piecewise deterministic Markov process-Monte Carlo , 2018, The Annals of Applied Probability.