Decomposing the Luenberger-Hicks-Moorsteen Total Factor Productivity indicator: An application to U.S. agriculture

This paper introduces a decomposition of the additively complete Luenberger–Hicks–Moorsteen Total Factor Productivity indicator into the usual components: technical change, technical inefficiency change and scale inefficiency change. Our approach is general in that it does not require differentiability or convexity of the production technology. Using a nonparametric framework, the empirical application focuses on the agricultural sector at the state-level in the U.S. over the period 1960–2004. The results show that Luenberger–Hicks–Moorsteen productivity increased substantially in the considered period. This productivity growth is due to output growth rather than input decline, although the extent depends on the convexity assumption of the technology. Technical change is the main driver, while the role of technical inefficiency change and scale inefficiency change also depends on the convexity assumption of the technology.

[1]  C. O'Donnell An aggregate quantity framework for measuring and decomposing productivity change , 2012 .

[2]  S. Grosskopf,et al.  PRODUCTIVITY GROWTH IN APEC COUNTRIES , 1996 .

[3]  V. E. Ball,et al.  Productivity and Profitability of US Agriculture: Evidence from a Panel of States , 2010 .

[4]  Shunsuke Managi,et al.  Regulatory reforms and productivity : an empirical analysis of the Japanese electricity industry , 2008 .

[5]  Hans Bjurek The Malmquist Total Factor Productivity Index , 1996 .

[6]  R. Williams,et al.  Corn Area Response to Local Ethanol Markets in the United States: A Grid Cell Level Analysis , 2016 .

[7]  C. O'Donnell,et al.  Nonparametric Estimates of the Components of Productivity and Profitability Change in U.S. Agriculture , 2012 .

[8]  Frederic Ang,et al.  To Mix or Specialise? A Coordination Productivity Indicator for English and Welsh farms , 2016 .

[9]  Walter Briec,et al.  On some semilattice structures for production technologies , 2011, Eur. J. Oper. Res..

[10]  Rolf Färe,et al.  The theory of economic price and quantity indicators , 2003 .

[11]  Rolf Färe,et al.  Malmquist Productivity Indexes: A Survey of Theory and Practice , 1998 .

[12]  S. Managi,et al.  Productivity measures and effects from subsidies and trade: an empirical analysis for Japan's forestry , 2010 .

[13]  Kevin J. Fox,et al.  Decomposing productivity indexes into explanatory factors , 2017, Eur. J. Oper. Res..

[14]  Rolf Färe,et al.  On piecewise reference technologies , 1988 .

[15]  J. Zofío,et al.  Graph efficiency and productivity measures: an application to US agriculture , 2001 .

[16]  Walter Briec,et al.  Biased Technical Change and Parallel Neutrality , 2007 .

[17]  Timo Kuosmanen,et al.  FDH Directional Distance Functions with an Application to European Commercial Banks , 2001 .

[18]  V. V. Podinovski,et al.  Selective convexity in DEA models , 2005, Eur. J. Oper. Res..

[19]  Shawna Grosskopf,et al.  Some Remarks on Productivity and its Decompositions , 2003 .

[20]  L. R. Christensen,et al.  THE ECONOMIC THEORY OF INDEX NUMBERS AND THE MEASUREMENT OF INPUT, OUTPUT, AND PRODUCTIVITY , 1982 .

[21]  C. Thomas-Agnan,et al.  NONPARAMETRIC FRONTIER ESTIMATION: A CONDITIONAL QUANTILE-BASED APPROACH , 2005, Econometric Theory.

[22]  C. Barros,et al.  Productivity Change of Nigerian Insurance Companies: 1994–2005 , 2008 .

[23]  Kristiaan Kerstens,et al.  EXACT RELATIONS BETWEEN FOUR DEFINITIONS OF PRODUCTIVITY INDICES AND INDICATORS , 2012 .

[24]  N. Petersen Data Envelopment Analysis on a Relaxed Set of Assumptions , 1990 .

[25]  R. Chambers Exact nonradial input, output, and productivity measurement , 2002 .

[26]  J. Florens,et al.  Nonparametric frontier estimation: a robust approach , 2002 .

[27]  D. Luenberger New optimality principles for economic efficiency and equilibrium , 1992 .

[28]  Peter Bogetoft,et al.  DEA on relaxed convexity assumptions , 1996 .

[29]  Kristiaan Kerstens,et al.  A Luenberger-Hicks-Moorsteen productivity indicator: its relation to the Hicks-Moorsteen productivity index and the Luenberger productivity indicator , 2004 .

[30]  Walter Diewert,et al.  Exact and superlative index numbers , 1976 .

[31]  Kevin J. Fox,et al.  Reference technology sets, Free Disposal Hulls and productivity decompositions , 2014 .

[32]  Léopold Simar,et al.  Efficiency and benchmarking with directional distances: a data-driven approach , 2016, J. Oper. Res. Soc..

[33]  Kristiaan Kerstens,et al.  Infeasibility and Directional Distance Functions with Application to the Determinateness of the Luenberger Productivity Indicator , 2009 .

[34]  D. Just,et al.  Production Incentives from Static Decoupling: Land Use Exclusion Restrictions , 2013 .

[35]  Kristiaan Kerstens,et al.  Bank Productivity and Performance Groups: A Decomposition Approach Based Upon the Luenberger Productivity Indicator , 2011, Eur. J. Oper. Res..

[36]  Henry Tulkens,et al.  On FDH efficiency analysis: Some methodological issues and applications to retail banking, courts, and urban transit , 1993 .

[37]  R. Färe,et al.  Productivity Growth, Technical Progress, and Efficiency Change in Industrialized Countries , 1994 .