Magnetotelluric images of magma distribution beneath Volcán Uturuncu, Bolivia: Implications for magma dynamics

The Altiplano-Puna volcanic complex in the central Andes records a history of major caldera-forming eruptions over the past 10 m.y. Geophysical and geodetic data indicate that magma is still present, and perhaps mobile, in the crust. Broadband magnetotelluric data were used to generate two-dimensional and three-dimensional electrical resistivity models of the Altiplano-Puna magma body (APMB) with a focus on the zone of inflation around Volcan Uturuncu in southern Bolivia. Low electrical resistivities ( 20%. The upper surface of the APMB is shallowest beneath Uturuncu and the geometry is consistent with geodynamic models that require the upward movement of a melt layer at this location. The shallower resistivity structure is characterized by discrete electrically conductive bodies, oriented east-west near sea level (depth of 5 km), which are interpreted as a combination of partial melt and fluids.

[1]  M. Simons,et al.  An InSAR‐based survey of volcanic deformation in the southern Andes , 2004 .

[2]  Alan G. Jones,et al.  The magnetotelluric method : theory and practice , 2012 .

[3]  A. Rust,et al.  Experimental Constraints on Dacite Pre-eruptive Magma Storage Conditions beneath Uturuncu Volcano , 2014 .

[4]  H. Bibby,et al.  The magnetotelluric phase tensor , 2004 .

[5]  C. Manning,et al.  Brine-assisted anatexis: Experimental melting in the system haplogranite–H2O–NaCl–KCl at deep-crustal conditions , 2013 .

[6]  A. Pommier,et al.  "SIGMELTS": A web portal for electrical conductivity calculations in geosciences , 2010, Comput. Geosci..

[7]  Tohru Watanabe,et al.  The relationship between electrical conductivity and melt fraction in a partially molten simple system: Archie's law behavior , 1993 .

[8]  G. Zandt,et al.  Modeling of highly anisotropic crust and application to the Altiplano‐Puna volcanic complex of the central Andes , 2003 .

[9]  F. Schilling,et al.  Partial melting below the magmatic arc in the central Andes deduced from geoelectromagnetic field experiments and laboratory data , 1997 .

[10]  M. Motagh,et al.  Deflation and inflation of a large magma body beneath Uturuncu volcano, Bolivia? Insights from InSAR data, surface lineaments and stress modelling , 2014 .

[11]  J. Gottsmann,et al.  The large‐scale surface uplift in the Altiplano‐Puna region of Bolivia: A parametric study of source characteristics and crustal rheology using finite element analysis , 2013 .

[12]  J. Blundy,et al.  Rapid decompression-driven crystallization recorded by melt inclusions from Mount St Helens volcano , 2005 .

[13]  Thomas A. Cahill,et al.  Seismicity and shape of the subducted Nazca Plate , 1992 .

[14]  F. Gaillard,et al.  The effect of pressure and water concentration on the electrical conductivity of dacitic melts: Implication for magnetotelluric imaging in subduction areas , 2015 .

[15]  C. Haberland,et al.  The Central Andean Altiplano‐Puna magma body , 1999 .

[16]  C. Haberland,et al.  Partial Melting in the Central Andean Crust: a Review of Geophysical, Petrophysical, and Petrologic Evidence , 2006 .

[17]  I. Budach,et al.  Crustal-scale electrical conductivity anomaly beneath inflating Lazufre volcanic complex, Central Andes , 2013 .

[18]  K. Ward,et al.  Seismic imaging of the magmatic underpinnings beneath the Altiplano-Puna volcanic complex from the joint inversion of surface wave dispersion and receiver functions , 2014 .

[19]  H. Bibby,et al.  Misinterpretation of Electrical Resistivity Data in Geothermal Prospecting: a Case Study from the Taupo Volcanic Zone , 2005 .

[20]  Yongwimon Lenbury,et al.  Three-dimensional magnetotelluric inversion : data-space method , 2005 .

[21]  Y. Fialko,et al.  Sombrero Uplift Above the Altiplano-Puna Magma Body: Evidence of a Ballooning Mid-Crustal Diapir , 2012, Science.

[22]  William Rodi,et al.  Nonlinear conjugate gradients algorithm for 2-D magnetotelluric inversion , 2001 .

[23]  S. L. Silva Altiplano-Puna volcanic complex of the central Andes , 1989 .

[24]  C. Haberland,et al.  Coincident anomalies of seismic attenuation and electrical resistivity beneath the southern Bolivian Altiplano plateau , 2003 .

[25]  R. C. Bailey,et al.  Decomposition of magnetotelluric impedance tensors in the presence of local three-dimensional galvanic distortion , 1989 .

[26]  G. Zandt,et al.  Seismic Detection and Characterization of the Altiplano-Puna Magma Body, Central Andes , 2003 .

[27]  B. Jicha,et al.  40Ar/39Ar chronostratigraphy of Altiplano-Puna volcanic complex ignimbrites reveals the development of a major magmatic province , 2011 .

[28]  Alan G. Jones,et al.  Multisite, multifrequency tensor decomposition of magnetotelluric data , 2001 .

[29]  M. Simons,et al.  An InSAR‐based survey of volcanic deformation in the central Andes , 2004 .

[30]  Antonio G. Camacho,et al.  Diapiric ascent of silicic magma beneath the Bolivian Altiplano , 2013 .

[31]  G. Zandt,et al.  The nature of orogenic crust in the central Andes , 2002 .

[32]  M. Brown,et al.  Granite: From genesis to emplacement , 2012 .

[33]  G. Zandt,et al.  Seismic detection and characterization of the Altiplano-Puna magma body , 2003 .

[34]  S. Myers,et al.  Crustal-thickness variations in the central Andes , 1996 .

[35]  M. Haney,et al.  Shallow seismicity, triggered seismicity, and ambient noise tomography at the long-dormant Uturuncu Volcano, Bolivia , 2012, Bulletin of Volcanology.

[36]  K. Ward,et al.  Multiple styles and scales of lithospheric foundering beneath the Puna Plateau, central Andes , 2015 .

[37]  Matthew E. Pritchard,et al.  Decadal volcanic deformation in the Central Andes Volcanic Zone revealed by InSAR time series , 2013 .

[38]  Matthew E. Pritchard,et al.  Uturuncu volcano, Bolivia: Volcanic unrest due to mid-crustal magma intrusion , 2008, American Journal of Science.

[39]  Anna Avdeeva,et al.  Three-dimensional Magnetotelluric Inversion , 2008 .