Interaction of voids and nanoductility in silica glass.

Multimillion-to-billion-atom molecular dynamics simulations are performed to investigate the interaction of voids in silica glass under hydrostatic tension. Nanometer size cavities nucleate in intervoid ligaments as a result of the expansion of Si-O rings due to a bond-switching mechanism, which involves bond breaking between Si-O and bond formation between that Si and a nonbridging O. With further increase in strain, nanocracks form on void surfaces and ligaments fracture through the growth and coalescence of ligament nanocavities in a manner similar to that observed in ductile metallic alloys.

[1]  C. Brooks Computer simulation of liquids , 1989 .

[2]  Nikolaos Aravas,et al.  Finite element implementation of gradient plasticity models Part I: Gradient-dependent yield functions , 1998 .

[3]  M. Deighton Fracture of Brittle Solids , 1976 .

[4]  B. J. Lee,et al.  Stress concentration induced by an elastic spheroidal particle in a plastically deforming solid , 1999 .

[5]  H. Senin,et al.  Temperature dependences of the third-order elastic constants and acoustic mode vibrational anharmonicity of vitreous silica , 1992 .

[6]  J. Guin,et al.  Surfaces formed by subcritical crack growth in silicate glasses , 2006 .

[7]  Noam Bernstein,et al.  Spanning the continuum to quantum length scales in a dynamic simulation of brittle fracture , 1998 .

[8]  E. Bouchaud The Morphology of Fracture Surfaces: A Tool for Understanding Crack Propagation in Complex Materials , 2003 .

[9]  Rino,et al.  Interaction potential for SiO2: A molecular-dynamics study of structural correlations. , 1990, Physical review. B, Condensed matter.

[10]  N. Mott The viscosity of vitreous silicon dioxide , 1987 .

[11]  J. Hutchinson,et al.  Cavitation instabilities in a power hardening elastic-plastic solid , 1992 .

[12]  Viggo Tvergaard,et al.  Effects of nonlocal damage in porous plastic solids , 1995 .

[13]  C. Rountree,et al.  Experimental investigation of damage and fracture in glassy materials at the nanometre scale , 2006 .

[14]  N. Moody,et al.  Determining fracture toughness of vitreous silica glass , 1995 .

[15]  J. Im,et al.  Cavity formation from inclusions in ductile fracture , 1975 .

[16]  Rajiv K. Kalia,et al.  ATOMISTIC ASPECTS OF CRACK PROPAGATION IN BRITTLE MATERIALS: Multimillion Atom Molecular Dynamics Simulations , 2002 .

[17]  P. Tzanetakis,et al.  Hydrogen dissolution in magnesium: A resistometric study under pressure , 1980 .

[18]  F. M. Beremin Cavity formation from inclusions in ductile fracture of A508 steel , 1981 .

[19]  T. B. Cox,et al.  An investigation of the plastic fracture of AISI 4340 and 18 Nickel-200 grade maraging steels , 1974, Metallurgical and Materials Transactions B.

[20]  W. Eccleston,et al.  Mater. Res. Soc. Symp. Proc. , 2006 .

[21]  D. Price Intermediate-range order in glasses , 1996 .

[22]  A. Nakano,et al.  First sharp diffraction peak and intermediate-range order in amorphous silica: finite-size effects in molecular dynamics simulations , 1994 .

[23]  M. Parrinello,et al.  Polymorphic transitions in single crystals: A new molecular dynamics method , 1981 .

[24]  V. Tvergaard Material Failure by Void Growth to Coalescence , 1989 .

[25]  Gautam R. Desiraju,et al.  Current Opinion in Solid State & Materials Science , 2001 .

[26]  D. M. Tracey,et al.  On the ductile enlargement of voids in triaxial stress fields , 1969 .

[27]  F Célarié,et al.  Glass breaks like metal, but at the nanometer scale. , 2003, Physical review letters.

[28]  E T Seppälä,et al.  Onset of void coalescence during dynamic fracture of ductile metals. , 2004, Physical review letters.

[29]  C. Dekker,et al.  Fabrication of solid-state nanopores with single-nanometre precision , 2003, Nature materials.