Reranking Methods for Visual Search

Most semantic video search methods use text-keyword queries or example video clips and images. But such methods have limitations. To address the problems of example-based video search approaches and avoid the use of specialized models, we conduct semantic video searches using a reranking method that automatically reorders the initial text search results based on visual cues and associated context. We developed two general reranking methods that explore the recurrent visual patterns in many contexts, such as the returned images or video shots from initial text queries, and video stories from multiple channels.

[1]  Alexander G. Hauptmann,et al.  Successful approaches in the TREC video retrieval evaluations , 2004, MULTIMEDIA '04.

[2]  Shih-Fu Chang,et al.  Video search reranking via information bottleneck principle , 2006, MM '06.

[3]  Shih-Fu Chang,et al.  Topic Tracking Across Broadcast News Videos with Visual Duplicates and Semantic Concepts , 2006, 2006 International Conference on Image Processing.

[4]  Avrim Blum,et al.  The Bottleneck , 2021, Monopsony Capitalism.

[5]  Milind R. Naphade,et al.  Learning the semantics of multimedia queries and concepts from a small number of examples , 2005, MULTIMEDIA '05.

[6]  W. Bruce Croft,et al.  Cluster-based retrieval using language models , 2004, SIGIR '04.

[7]  Ramesh R. Sarukkai,et al.  Video search: opportunities & challenges , 2005, MIR '05.

[8]  Thorsten Joachims,et al.  Transductive Inference for Text Classification using Support Vector Machines , 1999, ICML.

[9]  Yiming Yang,et al.  Translingual Information Retrieval: A Comparative Evaluation , 1997, IJCAI.

[10]  Naftali Tishby,et al.  Agglomerative Information Bottleneck , 1999, NIPS.

[11]  John R. Smith,et al.  IBM Research TRECVID-2009 Video Retrieval System , 2009, TRECVID.

[12]  Rong Yan,et al.  Multimedia Search with Pseudo-relevance Feedback , 2003, CIVR.

[13]  Yiming Yang,et al.  Learning approaches for detecting and tracking news events , 1999, IEEE Intell. Syst..

[14]  Rajeev Motwani,et al.  The PageRank Citation Ranking : Bringing Order to the Web , 1999, WWW 1999.

[15]  Gang Wang,et al.  TRECVID 2004 Search and Feature Extraction Task by NUS PRIS , 2004, TRECVID.

[16]  Winston H. Hsu,et al.  An information-theoretic framework towards large-scale video structuring, threading, and retrieval , 2007 .

[17]  Dong Xu,et al.  Columbia University TRECVID-2006 Video Search and High-Level Feature Extraction , 2006, TRECVID.