Why Tricategories?

We outline a logical framework, based on the theory of categories with extra structure, for logics that arise in computer science. We list many representative examples of structures that have arisen, then we classify them in terms of equational, and the more general essentially algebraic, structure. In both cases, we outline the main results and their significance for the logical framework. This study gives rise to coherence questions. We explain the issues, and then outline the category theoretic concepts, such as tricategories, that arise in resolving the coherence problems.

[1]  G. M. Kelly,et al.  Two-dimensional monad theory , 1989 .

[2]  Philippa Gardner,et al.  Representing logics in type theory , 1992 .

[3]  R. Seely,et al.  Locally cartesian closed categories and type theory , 1984, Mathematical Proceedings of the Cambridge Philosophical Society.

[4]  G. M. Kelly,et al.  A presentation of topoi as algebraic relative to categories or graphs , 1983 .

[5]  John Power An Algebraic Formulation for Data Refinement , 1989, Mathematical Foundations of Programming Semantics.

[6]  Peter T. Johnstone,et al.  Fibrations and partial products in a 2-category , 1993, Appl. Categorical Struct..

[7]  Claudio Hermida,et al.  Fibrations, logical predicates and indeterminates , 1993, CST.

[8]  Carolyn Brown,et al.  Linear logic and Petri nets : categories, algebra and proof , 1990 .

[9]  P. Gabriel,et al.  Lokal α-präsentierbare Kategorien , 1971 .

[10]  James Harland,et al.  On Resolution in Fragments of Classical Linear Logic , 1992, LPAR.

[11]  A. J. Power,et al.  A general coherence result , 1989 .

[12]  Edmund Robinson,et al.  A characterization of pie limits , 1991 .

[13]  Edmund Robinson,et al.  Categories of Partial Maps , 1988, Inf. Comput..

[14]  G. M. Kelly,et al.  Adjunctions whose counits are coequalizers, and presentations of finitary enriched monads , 1993 .

[15]  Michael P. Fourman,et al.  A Proposed Categorial Semantics for Pure ML , 1992, ICALP.

[16]  J. Lambek,et al.  Introduction to higher order categorical logic , 1986 .

[17]  G. M. Kelly,et al.  Flexible limits for 2-categories , 1989 .

[18]  R. F. C. Walters,et al.  The calculus of ends over a base topos , 1989 .

[19]  S. Lane Categories for the Working Mathematician , 1971 .

[20]  Ross Street,et al.  CONSPECTUS OF VARIABLE CATEGORIES , 1981 .

[21]  G. M. Kelly,et al.  Structures defined by finite limits in the enriched context, I , 1982 .

[22]  Ross Street,et al.  Fibrations in bicategories , 1980 .

[23]  Dusko Pavlovic,et al.  Predicates and Fibrations , 1990 .

[24]  Michael Makkai,et al.  Accessible categories: The foundations of categorical model theory, , 2007 .

[25]  Jean Benabou,et al.  Fibered categories and the foundations of naive category theory , 1985, Journal of Symbolic Logic.

[26]  Michael Johnson,et al.  The combinatorics of n-categorical pasting☆ , 1989 .

[27]  Furio Honsell,et al.  A framework for defining logics , 1993, JACM.

[28]  Bart Jacobs,et al.  Categorical type theory , 1991 .

[29]  James Harland,et al.  The Uniform Proof-Theoretic Foundation of Linear Logic Programming , 1991, ISLP.

[30]  Robert A. G. Seely,et al.  Hyperdoctrines, Natural Deduction and the Beck Condition , 1983, Math. Log. Q..

[31]  Ross Street,et al.  Coherence of tricategories , 1995 .