A new nanocomposite optical sensor based on polyurethane foam and gold nanorods for solid-phase spectroscopic determination of catecholamines

[1]  E. Conte,et al.  Highly selective and sensitive detection of catecholamines using NaLuGdF4:Yb3+/Er3+ upconversion nanoparticles decorated with metal ions , 2019, Sensors and Actuators B: Chemical.

[2]  S. Dmitrienko,et al.  Use of silver nanoparticles in spectrophotometry , 2017, Journal of Analytical Chemistry.

[3]  A. Garshev,et al.  Sorption of gold nanorods on polyurethane foam as a way to obtain a nanocomposite material with a surface plasmon resonance for chemical analysis purposes , 2017, Nanotechnologies in Russia.

[4]  E. C. Romani,et al.  Spherical gold nanoparticles and gold nanorods for the determination of gentamicin. , 2017, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.

[5]  Yeonhee Lee,et al.  Highly sensitive photometric determination of cyanide based on selective etching of gold nanorods , 2016, Microchimica Acta.

[6]  A. Garshev,et al.  Formation of core-shell Au@Ag nanorods induced by catecholamines: A comparative study and an analytical application. , 2016, Analytica chimica acta.

[7]  W. El-said,et al.  Selective Electrochemical Detection of Epinephrine Using Gold Nanoporous Film , 2016 .

[8]  Jiye Cai,et al.  Controlled side-by-side assembly of gold nanorods: A strategy for lead detection , 2014 .

[9]  Li-Ping Lin,et al.  Ultra-sensitive non-aggregation colorimetric sensor for detection of iron based on the signal amplification effect of Fe3+ catalyzing H2O2 oxidize gold nanorods. , 2013, Talanta.

[10]  S. Dmitrienko,et al.  Label-free gold nanoparticles for the determination of neomycin. , 2013, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.

[11]  Na Li,et al.  State of the art in gold nanoparticle synthesis , 2013 .

[12]  J. Dupont,et al.  Halloysite clay nanotubes and platinum nanoparticles dispersed in ionic liquid applied in the development of a catecholamine biosensor. , 2012, The Analyst.

[13]  Marta Sánchez-Paniagua López,et al.  Amperometric biosensors based on LDH-ALGINATE hybrid nanocomposite for aqueous and non-aqueous phenolic compounds detection , 2010 .

[14]  E. Pussard,et al.  Reference intervals for urinary catecholamines and metabolites from birth to adulthood. , 2009, Clinical biochemistry.

[15]  Shen-ming Chen,et al.  Applications of nanostructured Pt-Au hybrid film for the simultaneous determination of catecholamines in the presence of ascorbic acid , 2009 .

[16]  M. Doogue,et al.  Advances in biochemical screening for phaeochromocytoma using biogenic amines. , 2009, The Clinical biochemist. Reviews.

[17]  A Stephen K Hashmi,et al.  Gold-catalyzed organic reactions. , 2007, Chemical reviews.

[18]  Boris N. Khlebtsov,et al.  Observation of time-dependent single-particle light scattering from gold nanorods and nanospheres by using unpolarized dark-field microscopy , 2006, Saratov Fall Meeting.

[19]  Xuanjun Zhang,et al.  From large 3D assembly to highly dispersed spherical assembly: weak and strong coordination mediated self-aggregation of Au colloids , 2006 .

[20]  I. Pálinkó,et al.  Mimicking catalase and catecholase enzymes by copper(II)-containing complexes , 2006 .

[21]  Giulio F. Paciotti,et al.  Colloidal gold nanoparticles: a novel nanoparticle platform for developing multifunctional tumor‐targeted drug delivery vectors , 2006 .

[22]  Y. Li,et al.  Gold Nanoparticle‐Based Fluorometric and Colorimetric Sensing of Copper(II) Ions , 2005 .

[23]  Chad A Mirkin,et al.  Three-layer composite magnetic nanoparticle probes for DNA. , 2005, Journal of the American Chemical Society.

[24]  A. V. Alekseeva,et al.  Preparation and optical scattering characterization of gold nanorods and their application to a dot-immunogold assay. , 2005, Applied optics.

[25]  Hongwei Liao and,et al.  Gold Nanorod Bioconjugates , 2005 .

[26]  Benito Rodríguez-González,et al.  Optical Control and Patterning of Gold‐Nanorod–Poly(vinyl alcohol) Nanocomposite Films , 2005 .

[27]  Huimeng Wu,et al.  Oriented assembly of Au nanorods using biorecognition system. , 2005, Chemical communications.

[28]  P. Scrimin,et al.  Functional gold nanoparticles for recognition and catalysis , 2004 .

[29]  Shuming Nie,et al.  Using Solution-Phase Nanoparticles, Surface-Confined Nanoparticle Arrays and Single Nanoparticles as Biological Sensing Platforms , 2004, Journal of Fluorescence.

[30]  D. Astruc,et al.  Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. , 2004, Chemical reviews.

[31]  Stephan Link,et al.  Optical properties and ultrafast dynamics of metallic nanocrystals. , 2003, Annual review of physical chemistry.

[32]  Christine M. Micheel,et al.  Biological applications of colloidal nanocrystals , 2003 .

[33]  Mostafa A. El-Sayed,et al.  Preparation and Growth Mechanism of Gold Nanorods (NRs) Using Seed-Mediated Growth Method , 2003 .

[34]  David A. Schultz,et al.  Plasmon resonant particles for biological detection. , 2003, Current opinion in biotechnology.

[35]  Prashant V. Kamat,et al.  Photophysical, photochemical and photocatalytic aspects of metal nanoparticles , 2002 .

[36]  Li Jiao,et al.  A promising non-aggregation colorimetric sensor of AuNRs–Ag+ for determination of dopamine , 2013 .

[37]  V. Apyari,et al.  Using gold nanoparticles in spectrophotometry , 2013, Journal of Analytical Chemistry.

[38]  G. Hutchings,et al.  Gold catalysis. , 2006, Angewandte Chemie.

[39]  Younan Xia,et al.  Gold and silver nanoparticles: a class of chromophores with colors tunable in the range from 400 to 750 nm. , 2003, The Analyst.

[40]  B. Nikoobakht,et al.  種結晶を媒介とした成長法を用いた金ナノロッド(NR)の調製と成長メカニズム , 2003 .