Hierarchical and variational geometric modeling with wavelets

This paper discusses how wavelet techniques may be applied to a variety of geometric modeling tools. In particular, wavelet decompositions are shown to be useful for hierarchical control point or least squares editing. In addition, direct curve and surface manipulation methods using an underlying geometric variational principle can be solved more efficiently by using a wavelet basis. Because the wavelet basis is hierarchical, iterative solution methods converge rapidly. Also, since the wavelet coefficients indicate the degree of detail in the solution, the number of basis functions needed to express the variational minimum can be reduced, avoiding unnecessary computation. An implementation of a curve and surface modeler based on these ideas is discussed and experimental results are reported.

[1]  J. Meinguet Multivariate interpolation at arbitrary points made simple , 1979 .

[2]  Tom Lyche,et al.  Discrete B-splines and subdivision techniques in computer-aided geometric design and computer graphics , 1980 .

[3]  Demetri Terzopoulos,et al.  Regularization of Inverse Visual Problems Involving Discontinuities , 1986, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[4]  Demetri Terzopoulos,et al.  Image Analysis Using Multigrid Relaxation Methods , 1986, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[5]  H. Yserentant On the multi-level splitting of finite element spaces , 1986 .

[6]  Harry Yserentant,et al.  On the multi-level splitting of finite element spaces , 1986 .

[7]  David R. Forsey,et al.  Hierarchical B-spline refinement , 1988, SIGGRAPH.

[8]  Stéphane Mallat,et al.  A Theory for Multiresolution Signal Decomposition: The Wavelet Representation , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[9]  John C. Beatty,et al.  A technique for the direct manipulation of spline curves , 1989 .

[10]  John E. Howland,et al.  Computer graphics , 1990, IEEE Potentials.

[11]  Richard Szeliski,et al.  Fast Surface Interpolation Using Hierarchical Basis Functions , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[12]  George Celniker,et al.  Deformable curve and surface finite-elements for free-form shape design , 1991, SIGGRAPH.

[13]  J. Roulier,et al.  Designing faired parametric surfaces , 1991, Comput. Aided Des..

[14]  C. Chui Wavelet Analysis and Its Applications , 1992 .

[15]  W. Dahmen,et al.  Multilevel preconditioning , 1992 .

[16]  Barry Fowler,et al.  Geometric manipulation of tensor product surfaces , 1992, I3D '92.

[17]  GermanyNumerische Mathematik,et al.  Multilevel Preconditioning , 1992 .

[18]  T. Lyche,et al.  Spline-Wavelets of Minimal Support , 1992 .

[19]  C. Chui,et al.  Wavelets on a Bounded Interval , 1992 .

[20]  Carlo H. Séquin,et al.  Functional optimization for fair surface design , 1992, SIGGRAPH.

[21]  Andrew P. Witkin,et al.  Variational surface modeling , 1992, SIGGRAPH.

[22]  D. Forsey,et al.  Multi-Resolution Surface Approximation for Animation , 1992 .

[23]  Charles K. Chui,et al.  An Introduction to Wavelets , 1992 .

[24]  I. Daubechies,et al.  Biorthogonal bases of compactly supported wavelets , 1992 .

[25]  Pat Hanrahan,et al.  Wavelet radiosity , 1993, SIGGRAPH.

[26]  Tony DeRose,et al.  Efficient, fair interpolation using Catmull-Clark surfaces , 1993, SIGGRAPH.

[27]  Sam Qian,et al.  Wavelets and the Numerical Solution of Partial Differential Equations , 1993 .

[28]  S. Jaffard,et al.  Orthonormal wavelets, analysis of operators, and applications to numerical analysis , 1993 .

[29]  Zicheng Liu,et al.  Hierarchical spacetime control , 1994, SIGGRAPH.

[30]  David Salesin,et al.  Multiresolution curves , 1994, SIGGRAPH.

[31]  Steven J. Gortler,et al.  Wavelet Methods For Computer Graphics , 1995 .

[32]  Tony DeRose,et al.  Multiresolution analysis for surfaces of arbitrary topological type , 1997, TOGS.