Real-time parameter estimation for degrading and pinching hysteretic models

Abstract Many civil and mechanical structures exhibit hysteresis with degradation and/or pinching when subject to severe cyclic loadings such as earthquakes, wind, or sea waves. The modeling and identification of non-linear hysteretic systems with degradation and pinching is therefore a practical problem encountered in the engineering mechanics field. On-line identification of degrading and pinching hysteretic systems is quite a challenging problem because of its complexity. A recently developed technique, the unscented Kalman filter (UKF) which is capable of handling any functional non-linearity, is applied to the on-line parametric system identification of hysteretic differential models with degradation and pinching. Simulation results show that the UKF is efficient and effective for the real-time state estimation and parameter identification of highly non-linear hysteretic systems with degradation and pinching.

[1]  Yongmin Yang,et al.  Parameter identification of inelastic structures under dynamic loads , 2002 .

[2]  Y. Wen Method for Random Vibration of Hysteretic Systems , 1976 .

[3]  John B. Mander,et al.  Parameter identification for degrading and pinched hysteretic structural concrete systems , 1997 .

[4]  Mohammad Noori,et al.  Random Vibration of Degrading, Pinching Systems , 1985 .

[5]  Nopdanai Ajavakom,et al.  On system identification and response prediction of degrading structures , 2006 .

[6]  Andrew W. Smyth,et al.  Adaptive Parametric Identification Scheme for a Class of Nondeteriorating and Deteriorating Nonlinear Hysteretic Behavior , 2008 .

[7]  Jann N. Yang,et al.  On-line identification of non-linear hysteretic structures using an adaptive tracking technique , 2004 .

[8]  Thomas T. Baber,et al.  Random Vibration Hysteretic, Degrading Systems , 1981 .

[9]  Hugh F. Durrant-Whyte,et al.  A new method for the nonlinear transformation of means and covariances in filters and estimators , 2000, IEEE Trans. Autom. Control..

[10]  Yoshiyuki Suzuki,et al.  Improvement Of Parameter Estimation for Non-Linear Hysteretic Systems With Slip By A Fast Bayesian Bootstrap Filter , 2004 .

[11]  T. T. Baber,et al.  Modeling General Hysteresis Behavior and Random Vibration Application , 1986 .

[12]  S. T. Mau,et al.  Systems Identification of Degrading Hysteretic Restoring Forces , 1988 .

[13]  H.F. Durrant-Whyte,et al.  A new approach for filtering nonlinear systems , 1995, Proceedings of 1995 American Control Conference - ACC'95.

[14]  Andrew W. Smyth,et al.  On-Line Parametric Identification of MDOF Nonlinear Hysteretic Systems , 1999 .

[15]  Yoshiyuki Suzuki,et al.  Identification of hysteretic systems with slip using bootstrap filter , 2004 .

[16]  J. Beck,et al.  Bayesian State and Parameter Estimation of Uncertain Dynamical Systems , 2006 .

[17]  C. Loh,et al.  A three-stage identification approach for hysteretic systems , 1993 .

[18]  Simon J. Julier,et al.  The scaled unscented transformation , 2002, Proceedings of the 2002 American Control Conference (IEEE Cat. No.CH37301).

[19]  Yongmin Yang,et al.  Constrained Kalman Filter for Nonlinear Structural Identification , 2003 .

[20]  Kai Qi,et al.  Adaptive H ∞ Filter: Its Application to Structural Identification , 1998 .

[21]  Arthur Gelb,et al.  Applied Optimal Estimation , 1974 .

[22]  Li Zhou,et al.  An adaptive extended Kalman filter for structural damage identification , 2006 .

[23]  M. Yar,et al.  Parameter estimation for hysteretic systems , 1987 .

[24]  S. Haykin Kalman Filtering and Neural Networks , 2001 .

[25]  M. Hoshiya,et al.  Structural Identification by Extended Kalman Filter , 1984 .

[26]  Greg Foliente,et al.  Hysteresis Modeling of Wood Joints and Structural Systems , 1995 .

[27]  Yi-Qing Ni,et al.  IDENTIFICATION OF NON-LINEAR HYSTERETIC ISOLATORS FROM PERIODIC VIBRATION TESTS , 1998 .

[28]  Zhikun Hou,et al.  Modeling and random vibration analysis of SDOF systems with asymmetric hysteresis , 1997 .

[29]  H. Zhang,et al.  Parameter Analysis of the Differential Model of Hysteresis , 2004 .

[30]  Rudolph van der Merwe,et al.  The square-root unscented Kalman filter for state and parameter-estimation , 2001, 2001 IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings (Cat. No.01CH37221).