Comparison of Landsat 8 OLI and Landsat 7 ETM+ for estimating grassland LAI using model inversion and spectral indices: case study of Mpumalanga, South Africa

ABSTRACT The leaf area index (LAI) is the key biophysical indicator used to assess the condition of rangeland. In this study, we investigated the implications of narrow spectral response, high radiometric resolution (12 bits), and higher signal-to-noise ratio of the Landsat 8 Operational Land Imager (OLI) sensor for the estimation of LAI. The Landsat 8 LAI estimates were compared to that of its predecessors, namely Landsat 7 Enhanced Thematic Mapper Plus (ETM+) (8 bits). Furthermore, we compared the radiative transfer model (RTM) and spectral indices approaches for estimating LAI on rangeland systems in South Africa. The RTM was inverted using artificial neural network (ANN) and lookup table (LUT) algorithms. The accuracy of the models was higher for Landsat 8 OLI, where ANN (root mean squared error, RMSE = 0. 13; R2 = 0. 89), LUT (RMSE = 0. 25; R2 = 0. 50), compared to Landsat 7 ETM+, where ANN (RMSE = 0. 35; R2 = 0. 60), LUT (RMSE = 0. 38; R2 = 0. 50). Compared to an empirical approach, the RTM provided higher accuracy. In conclusion, Landsat 8 OLI provides an improvement for the estimation of LAI over Landsat 7 ETM+. This is useful for rangeland monitoring.

[1]  G. D. Fuller Vegetation of South Africa , 1917, Botanical Gazette.

[2]  G. Birth,et al.  Measuring the Color of Growing Turf with a Reflectance Spectrophotometer1 , 1968 .

[3]  J. A. Schell,et al.  Monitoring vegetation systems in the great plains with ERTS , 1973 .

[4]  C. Tucker Red and photographic infrared linear combinations for monitoring vegetation , 1979 .

[5]  W. Verhoef Light scattering by leaf layers with application to canopy reflectance modelling: The SAIL model , 1984 .

[6]  W. Verhoef Earth observation modelling based on layer scattering matrices , 1984 .

[7]  Ann Henderson-Sellers,et al.  Biosphere-atmosphere Transfer Scheme (BATS) for the NCAR Community Climate Model , 1986 .

[8]  A. Huete A soil-adjusted vegetation index (SAVI) , 1988 .

[9]  R. Crippen Calculating the vegetation index faster , 1990 .

[10]  F. Baret,et al.  PROSPECT: A model of leaf optical properties spectra , 1990 .

[11]  S. Jacquemoud Inversion of the PROSPECT + SAIL Canopy Reflectance Model from AVIRIS Equivalent Spectra: Theoretical Study , 1993 .

[12]  A. Huete,et al.  A Modified Soil Adjusted Vegetation Index , 1994 .

[13]  H. V. Leeuwen,et al.  Modelling and synergetic use of optical and microwave remote sensing. Report 6: Radar backscatter modelling for synergetic use with optical remote sensing in the application to agricultural crops. , 1994 .

[14]  J. Peñuelas,et al.  Assessment of photosynthetic radiation‐use efficiency with spectral reflectance , 1995 .

[15]  Hui Qing Liu,et al.  A feedback based modification of the NDVI to minimize canopy background and atmospheric noise , 1995, IEEE Transactions on Geoscience and Remote Sensing.

[16]  G. Rondeaux,et al.  Optimization of soil-adjusted vegetation indices , 1996 .

[17]  A. Huete,et al.  A comparison of vegetation indices over a global set of TM images for EOS-MODIS , 1997 .

[18]  H. Tian,et al.  Effect of interannual climate variability on carbon storage in Amazonian ecosystems , 1998, Nature.

[19]  Karin S. Fassnacht,et al.  Relationships between leaf area index and Landsat TM spectral vegetation indices across three temperate zone sites , 1999 .

[20]  A national vegetation database for South Africa. , 2012 .

[21]  R. Myneni,et al.  Investigation of a model inversion technique to estimate canopy biophysical variables from spectral and directional reflectance data , 2000 .

[22]  A. Gitelson,et al.  Novel algorithms for remote estimation of vegetation fraction , 2002 .

[23]  F. J. García-Haro,et al.  A generalized soil-adjusted vegetation index , 2002 .

[24]  A. Viña,et al.  Remote estimation of leaf area index and green leaf biomass in maize canopies , 2003 .

[25]  Yuri Knyazikhin,et al.  Retrieval of canopy biophysical variables from bidirectional reflectance Using prior information to solve the ill-posed inverse problem , 2003 .

[26]  James A. Young,et al.  A New Approach to Monitoring Rangelands , 2003 .

[27]  J. G. White,et al.  Aerial Color Infrared Photography for Determining Early In‐Season Nitrogen Requirements in Corn , 2005 .

[28]  L. Pedroni,et al.  Climate change - biodiversity and livelihood impacts. , 2005 .

[29]  Yuhong He,et al.  Studying mixed grassland ecosystems I: suitable hyperspectral vegetation indices , 2006 .

[30]  M. Schlerf,et al.  Inversion of a forest reflectance model to estimate structural canopy variables from hyperspectral remote sensing data , 2006 .

[31]  A. Ramoelo Savanna grass quality: remote sensing estimation from local to regional scale , 2007 .

[32]  Shunlin Liang,et al.  Recent developments in estimating land surface biogeophysical variables from optical remote sensing , 2007 .

[33]  A. Skidmore,et al.  Inversion of a radiative transfer model for estimating vegetation LAI and chlorophyll in a heterogeneous grassland , 2008 .

[34]  D. H. K. Fairbanks,et al.  Use patterns and value of Savanna resources in three Rural villages in South Africa , 2002, Economic Botany.

[35]  J. Moreno,et al.  Seasonal variations of leaf area index of agricultural fields retrieved from Landsat data , 2008 .

[36]  M. Vohland,et al.  Estimating structural and biochemical parameters for grassland from spectroradiometer data by radiative transfer modelling (PROSPECT+SAIL) , 2008 .

[37]  Graham J. Williams,et al.  Rattle: A Data Mining GUI for R , 2009, R J..

[38]  A. Skidmore,et al.  Leaf Area Index derivation from hyperspectral vegetation indicesand the red edge position , 2009 .

[39]  A. Urrutia,et al.  Validation of the Leaf Area Index product from MODIS-15 for Rice using a Soil-Leaf-Canopy Radiative Transfer Model , 2010 .

[40]  Vuolo Francesco,et al.  Retrieval of biophysical vegetation products from RapidEye imagery , 2010 .

[41]  A. Skidmore,et al.  Mapping grassland leaf area index with airborne hyperspectral imagery : a comparison study of statistical approaches and inversion of radiative transfer models , 2011 .

[42]  Luis Alonso,et al.  Evaluation of Sentinel-2 Red-Edge Bands for Empirical Estimation of Green LAI and Chlorophyll Content , 2011, Sensors.

[43]  D. Mazumdar Multiangular crop differentiation and LAI estimation using PROSAIL model inversion , 2011 .

[44]  A. Skidmore,et al.  Mapping spatio-temporal variation of grassland quantity and quality using MERIS data and the PROSAIL model , 2012 .

[45]  Flávio Jorge Ponzoni,et al.  Calibration of a Species-Specific Spectral Vegetation Index for Leaf Area Index (LAI) Monitoring: Example with MODIS Reflectance Time-Series on Eucalyptus Plantations , 2012, Remote. Sens..

[46]  Pavel Propastin,et al.  Retrieval of remotely sensed LAI using Landsat ETM+ data and ground measurements of solar radiation and vegetation structure: Implication of leaf inclination angle , 2013, Int. J. Appl. Earth Obs. Geoinformation.

[47]  Shanyu Huang,et al.  Non-destructive estimation of rice plant nitrogen status with Crop Circle multispectral active canopy sensor , 2013 .

[48]  M. Cho,et al.  ESTIMATING LEAF AREA INDEX ( LAI ) BY INVERSION OF PROSAIL RADIATIVE TRANSFER MODEL USING , 2015 .

[49]  Vinay Kumar Sehgal,et al.  Comparative Evaluation of Inversion Approaches of the Radiative Transfer Model for Estimation of Crop Biophysical Parameters , 2015 .