Somatostatin-expressing neurons in cortical networks

Somatostatin-expressing GABAergic neurons constitute a major class of inhibitory neurons in the mammalian cortex and are characterized by dense wiring into the local network and high basal firing activity that persists in the absence of synaptic input. This firing provides both GABA type A receptor (GABAAR)- and GABABR-mediated inhibition that operates at fast and slow timescales. The activity of somatostatin-expressing neurons is regulated by brain state, during learning and in rewarded behaviour. Here, we review recent advances in our understanding of how this class of cells can control network activity, with specific reference to how this is constrained by their anatomical and electrophysiological properties.

[1]  S. Anderson,et al.  Origins of Cortical Interneuron Subtypes , 2004, The Journal of Neuroscience.

[2]  A. Agmon,et al.  Short-Term Plasticity of Unitary Inhibitory-to-Inhibitory Synapses Depends on the Presynaptic Interneuron Subtype , 2012, The Journal of Neuroscience.

[3]  Ariel Agmon,et al.  Properties of precise firing synchrony between synaptically coupled cortical interneurons depend on their mode of coupling. , 2015, Journal of neurophysiology.

[4]  H. Betz,et al.  Somatostatin Inhibits Excitatory Transmission at Rat Hippocampal Synapses via Presynaptic Receptors , 1997, The Journal of Neuroscience.

[5]  Ariel Agmon,et al.  Not all that glitters is gold: off-target recombination in the somatostatin–IRES-Cre mouse line labels a subset of fast-spiking interneurons , 2013, Front. Neural Circuits.

[6]  J. Parnavelas,et al.  Postnatal development of somatostatin-containing neurons in the visual cortex of normal and dark-reared rats , 2004, Experimental Brain Research.

[7]  Alison L. Barth,et al.  Neocortical Somatostatin Neurons Reversibly Silence Excitatory Transmission via GABAb Receptors , 2015, Current Biology.

[8]  F. Karube,et al.  Selective coexpression of multiple chemical markers defines discrete populations of neocortical GABAergic neurons. , 2011, Cerebral cortex.

[9]  Danko D. Georgiev,et al.  Deficits in transcriptional regulators of cortical parvalbumin neurons in schizophrenia. , 2012, The American journal of psychiatry.

[10]  E. Callaway,et al.  Mouse cortical inhibitory neuron type that coexpresses somatostatin and calretinin , 2006, The Journal of comparative neurology.

[11]  Jochen F Staiger,et al.  Unique functional properties of somatostatin-expressing GABAergic neurons in mouse barrel cortex , 2012, Nature Neuroscience.

[12]  M. Kossut,et al.  Interneurons containing somatostatin are affected by learning-induced cortical plasticity , 2013, Neuroscience.

[13]  Y. Kubota,et al.  GABAergic cell subtypes and their synaptic connections in rat frontal cortex. , 1997, Cerebral cortex.

[14]  S. D. Moore,et al.  Somatostatin augments the M-current in hippocampal neurons. , 1988, Science.

[15]  Erika E Fanselow,et al.  The roles of somatostatin-expressing (GIN) and fast-spiking inhibitory interneurons in UP-DOWN states of mouse neocortex. , 2010, Journal of neurophysiology.

[16]  J. Rubenstein,et al.  GABA progenitors grafted into the adult epileptic brain control seizures and abnormal behavior , 2013, Nature Neuroscience.

[17]  P. Somogyi,et al.  Physiological properties of anatomically identified axo-axonic cells in the rat hippocampus. , 1994, Journal of neurophysiology.

[18]  L. Acsády,et al.  Postsynaptic targets of somatostatin-immunoreactive interneurons in the rat hippocampus , 1999, Neuroscience.

[19]  E. Kuramoto,et al.  Cell Type-Specific Inhibitory Inputs to Dendritic and Somatic Compartments of Parvalbumin-Expressing Neocortical Interneuron , 2013, The Journal of Neuroscience.

[20]  Wei Zhang,et al.  Surviving Hilar Somatostatin Interneurons Enlarge, Sprout Axons, and Form New Synapses with Granule Cells in a Mouse Model of Temporal Lobe Epilepsy , 2009, The Journal of Neuroscience.

[21]  J. Disterhoft,et al.  Learning Increases Intrinsic Excitability of Hippocampal Interneurons , 2013, The Journal of Neuroscience.

[22]  G. Juhász,et al.  Receptors of peptides as therapeutic targets in epilepsy research. , 2014, Current medicinal chemistry.

[23]  P. C. Murphy,et al.  Cerebral Cortex , 2017, Cerebral Cortex.

[24]  G. Fishell,et al.  Mechanisms of inhibition within the telencephalon: "where the wild things are". , 2011, Annual review of neuroscience.

[25]  P. Somogyi,et al.  Spike timing of dendrite-targeting bistratified cells during hippocampal network oscillations in vivo , 2004, Nature Neuroscience.

[26]  Attila Losonczy,et al.  Dendritic Inhibition in the Hippocampus Supports Fear Learning , 2014, Science.

[27]  Thomas M. Morse,et al.  Compartmentalization of GABAergic Inhibition by Dendritic Spines , 2013, Science.

[28]  H. Adesnik,et al.  A neural circuit for spatial summation in visual cortex , 2012, Nature.

[29]  P. Golshani,et al.  Cellular mechanisms of brain-state-dependent gain modulation in visual cortex , 2013, Nature Neuroscience.

[30]  D. Prince,et al.  Excitatory input onto hilar somatostatin interneurons is increased in a chronic model of epilepsy. , 2010, Journal of neurophysiology.

[31]  I. Katona,et al.  Interneurons are the local targets of hippocampal inhibitory cells which project to the medial septum , 2003, The European journal of neuroscience.

[32]  Joshua I. Sanders,et al.  Cortical interneurons that specialize in disinhibitory control , 2013, Nature.

[33]  P. Somogyi,et al.  Neuronal Diversity in GABAergic Long-Range Projections from the Hippocampus , 2007, The Journal of Neuroscience.

[34]  O. Paulsen,et al.  Distinct roles of GABAB1a- and GABAB1b-containing GABAB receptors in spontaneous and evoked termination of persistent cortical activity , 2012, The Journal of physiology.

[35]  T. Kosaka,et al.  Immunocytochemical characterization of hippocamposeptal projecting GABAergic nonprincipal neurons in the mouse brain: a retrograde labeling study , 2002, Brain Research.

[36]  Erika E Fanselow,et al.  Selective, state-dependent activation of somatostatin-expressing inhibitory interneurons in mouse neocortex. , 2008, Journal of neurophysiology.

[37]  A. Reyes,et al.  Spatial Profile of Excitatory and Inhibitory Synaptic Connectivity in Mouse Primary Auditory Cortex , 2012, The Journal of Neuroscience.

[38]  Rafael Yuste,et al.  Global dendritic calcium spikes in mouse layer 5 low threshold spiking interneurones: implications for control of pyramidal cell bursting , 2004, The Journal of physiology.

[39]  Aurélie Pala,et al.  In Vivo Measurement of Cell-Type-Specific Synaptic Connectivity and Synaptic Transmission in Layer 2/3 Mouse Barrel Cortex , 2015, Neuron.

[40]  P. Buckmaster,et al.  Rapamycin suppresses axon sprouting by somatostatin interneurons in a mouse model of temporal lobe epilepsy , 2011, Epilepsia.

[41]  H. Markram,et al.  Disynaptic Inhibition between Neocortical Pyramidal Cells Mediated by Martinotti Cells , 2007, Neuron.

[42]  B. Connors,et al.  Two dynamically distinct inhibitory networks in layer 4 of the neocortex. , 2003, Journal of neurophysiology.

[43]  Takaki Komiyama,et al.  Learning enhances the relative impact of top-down processing in the visual cortex , 2015, Nature Neuroscience.

[44]  S. L. Dun,et al.  Colocalization of nitric oxide synthase and somatostatin immunoreactivity in rat dentate hilar neurons. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[45]  W. Gan,et al.  Branch-specific dendritic Ca2+ spikes cause persistent synaptic plasticity , 2015, Nature.

[46]  Takaki Komiyama,et al.  Subtype-specific plasticity of inhibitory circuits in motor cortex during motor learning , 2015, Nature Neuroscience.

[47]  C. McBain,et al.  Activation of metabotropic glutamate receptors differentially affects two classes of hippocampal interneurons and potentiates excitatory synaptic transmission , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[48]  G. Fishell,et al.  The Largest Group of Superficial Neocortical GABAergic Interneurons Expresses Ionotropic Serotonin Receptors , 2010, The Journal of Neuroscience.

[49]  Eben Kirksey,et al.  Where the Wild Things Are , 2019, Wild Things.

[50]  Erika E Fanselow,et al.  Motor cortex broadly engages excitatory and inhibitory neurons in somatosensory barrel cortex. , 2014, Cerebral cortex.

[51]  P. Somogyi,et al.  Target-cell-specific facilitation and depression in neocortical circuits , 1998, Nature Neuroscience.

[52]  Adriano B. L. Tort,et al.  OLM interneurons differentially modulate CA3 and entorhinal inputs to hippocampal CA1 neurons , 2012, Nature Neuroscience.

[53]  B. Connors,et al.  Functional Properties of Electrical Synapses between Inhibitory Interneurons of Neocortical Layer 4 , 2022 .

[54]  Mriganka Sur,et al.  An acetylcholine-activated microcircuit drives temporal dynamics of cortical activity , 2015, Nature Neuroscience.

[55]  A. Burkhalter,et al.  Three distinct families of GABAergic neurons in rat visual cortex. , 1997, Cerebral cortex.

[56]  J. Riddell,et al.  Populations of inhibitory and excitatory interneurons in lamina II of the adult rat spinal dorsal horn revealed by a combined electrophysiological and anatomical approach , 2010, PAIN®.

[57]  N. Berman,et al.  The development of somatostatin immunoreactive neurons in cat visual cortical areas. , 1993, Brain research. Developmental brain research.

[58]  B. Connors,et al.  Synchronous Activity of Inhibitory Networks in Neocortex Requires Electrical Synapses Containing Connexin36 , 2001, Neuron.

[59]  William A. Catterall,et al.  Impaired excitability of somatostatin- and parvalbumin-expressing cortical interneurons in a mouse model of Dravet syndrome , 2014, Proceedings of the National Academy of Sciences.

[60]  M. Stryker,et al.  A Cortical Circuit for Gain Control by Behavioral State , 2014, Cell.

[61]  Arto V. Nurmikko,et al.  Pathway-Specific Feedforward Circuits between Thalamus and Neocortex Revealed by Selective Optical Stimulation of Axons , 2010, Neuron.

[62]  J. Coyle,et al.  Developmental expression of somatostatin in mouse brain. II. In situ hybridization. , 1990, Brain research. Developmental brain research.

[63]  Y. Kubota,et al.  Correlation of physiological subgroupings of nonpyramidal cells with parvalbumin- and calbindinD28k-immunoreactive neurons in layer V of rat frontal cortex. , 1993, Journal of neurophysiology.

[64]  Alexander S. Ecker,et al.  Principles of connectivity among morphologically defined cell types in adult neocortex , 2015, Science.

[65]  H. Markram,et al.  Anatomical, physiological and molecular properties of Martinotti cells in the somatosensory cortex of the juvenile rat , 2004, The Journal of physiology.

[66]  R. Yuste,et al.  Axo-dendritic overlap and laminar projection can explain interneuron connectivity to pyramidal cells. , 2013, Cerebral cortex.

[67]  B. Sakmann,et al.  Transmitter release modulation by intracellular Ca2+ buffers in facilitating and depressing nerve terminals of pyramidal cells in layer 2/3 of the rat neocortex indicates a target cell‐specific difference in presynaptic calcium dynamics , 2001, The Journal of physiology.

[68]  A. Sampson,et al.  Gene Expression Deficits in a Subclass of GABA Neurons in the Prefrontal Cortex of Subjects with Schizophrenia , 2003, The Journal of Neuroscience.

[69]  B. Hangya,et al.  Distinct behavioural and network correlates of two interneuron types in prefrontal cortex , 2013, Nature.

[70]  R. Yuste,et al.  Dense Inhibitory Connectivity in Neocortex , 2011, Neuron.

[71]  H. M. Morris,et al.  Alterations in somatostatin mRNA expression in the dorsolateral prefrontal cortex of subjects with schizophrenia or schizoaffective disorder. , 2008, Cerebral cortex.

[72]  Sean L. Hill,et al.  Statistical connectivity provides a sufficient foundation for specific functional connectivity in neocortical neural microcircuits , 2012, Proceedings of the National Academy of Sciences.

[73]  J. Coyle,et al.  Developmental expression of somatostatin in mouse brain. I. Immunocytochemical studies. , 1990, Brain research. Developmental brain research.

[74]  S. Nelson,et al.  A Resource of Cre Driver Lines for Genetic Targeting of GABAergic Neurons in Cerebral Cortex , 2011, Neuron.

[75]  Y. Kawaguchi,et al.  Noradrenergic Excitation and Inhibition of GABAergic Cell Types in Rat Frontal Cortex , 1998, The Journal of Neuroscience.

[76]  D. Prince,et al.  Cholinergic switching within neocortical inhibitory networks. , 1998, Science.

[77]  M. Larkum,et al.  The Cellular Basis of GABAB-Mediated Interhemispheric Inhibition , 2012, Science.

[78]  M. Scanziani,et al.  Inhibition of Inhibition in Visual Cortex: The Logic of Connections Between Molecularly Distinct Interneurons , 2013, Nature Neuroscience.

[79]  C. McBain,et al.  Dual embryonic origins of functionally distinct hippocampal O-LM cells revealed by differential 5-HT3AR expression , 2013, Nature Neuroscience.

[80]  B. Connors,et al.  The Spatial Dimensions of Electrically Coupled Networks of Interneurons in the Neocortex , 2002, The Journal of Neuroscience.

[81]  C. McBain,et al.  Cell type‐specific dependence of muscarinic signalling in mouse hippocampal stratum oriens interneurones , 2006, The Journal of physiology.

[82]  A. Losonczy,et al.  Regulation of neuronal input transformations by tunable dendritic inhibition , 2012, Nature Neuroscience.

[83]  T. Otis,et al.  A Reorganized GABAergic Circuit in a Model of Epilepsy: Evidence from Optogenetic Labeling and Stimulation of Somatostatin Interneurons , 2013, The Journal of Neuroscience.

[84]  Massimo Scanziani,et al.  Supralinear increase of recurrent inhibition during sparse activity in the somatosensory cortex , 2007, Nature Neuroscience.

[85]  B. Connors,et al.  A network of electrically coupled interneurons drives synchronized inhibition in neocortex , 2000, Nature Neuroscience.

[86]  Thomas K. Berger,et al.  Brief Bursts Self-Inhibit and Correlate the Pyramidal Network , 2010, PLoS biology.

[87]  M. Montminy,et al.  Binding of a nuclear protein to the cyclic-AMP response element of the somatostatin gene , 1987, Nature.

[88]  A. Agmon,et al.  Distinct Subtypes of Somatostatin-Containing Neocortical Interneurons Revealed in Transgenic Mice , 2006, The Journal of Neuroscience.

[89]  H. Markram,et al.  Interneurons of the neocortical inhibitory system , 2004, Nature Reviews Neuroscience.

[90]  G. Siggins,et al.  Somatostatin increases a voltage-insensitive K+ conductance in rat CA1 hippocampal neurons. , 1998, Journal of neurophysiology.

[91]  R. Tremblay,et al.  Neocortical Somatostatin-Expressing GABAergic Interneurons Disinhibit the Thalamorecipient Layer 4 , 2013, Neuron.

[92]  Quanxin Wang,et al.  Multiple Distinct Subtypes of GABAergic Neurons in Mouse Visual Cortex Identified by Triple Immunostaining , 2007, Frontiers in neuroanatomy.

[93]  Edward M. Callaway,et al.  Laminar Specificity of Functional Input to Distinct Types of Inhibitory Cortical Neurons , 2009, The Journal of Neuroscience.

[94]  G. Fishell,et al.  A disinhibitory circuit mediates motor integration in the somatosensory cortex , 2013, Nature Neuroscience.

[95]  D. Johnston,et al.  Target Cell-Dependent Normalization of Transmitter Release at Neocortical Synapses , 2005, Science.

[96]  P. Leroux,et al.  Identification of multiple somatostatin receptors in the rat somatosensory cortex during development , 2000, The Journal of comparative neurology.

[97]  S. Vicini,et al.  Hilar Somatostatin Interneurons Contribute to Synchronized GABA Activity in an In Vitro Epilepsy Model , 2014, PloS one.

[98]  Michael Häusser,et al.  Target-Specific Effects of Somatostatin-Expressing Interneurons on Neocortical Visual Processing , 2013, The Journal of Neuroscience.

[99]  P. Somogyi,et al.  The metabotropic glutamate receptor (mGluRlα) is concentrated at perisynaptic membrane of neuronal subpopulations as detected by immunogold reaction , 1993, Neuron.

[100]  G. Fishell,et al.  The Temporal and Spatial Origins of Cortical Interneurons Predict Their Physiological Subtype , 2005, Neuron.

[101]  Karen L. Smith,et al.  Novel Hippocampal Interneuronal Subtypes Identified Using Transgenic Mice That Express Green Fluorescent Protein in GABAergic Interneurons , 2000, The Journal of Neuroscience.

[102]  G. Buzsáki,et al.  Interneurons of the hippocampus , 1998, Hippocampus.

[103]  B. Connors,et al.  Contributions of Diverse Excitatory and Inhibitory Neurons to Recurrent Network Activity in Cerebral Cortex , 2015, The Journal of Neuroscience.

[104]  B. Connors,et al.  Two networks of electrically coupled inhibitory neurons in neocortex , 1999, Nature.