The effect of machine availability on the worst-case performance of LPT

We consider the makespan minimization parallel machine scheduling problem where each machine may be unavailable for a known time interval. For this problem, we investigate how the worst-case behavior of the longest processing time first algorithm (LPT) is affected by the availability of machines. In particular, for given m machines, we analyze the cases where arbitrary number, λ, ranging from one to m - 1, machines are unavailable simultaneously. Then, we show that the makespan of the schedule generated by LPT is never more than the tight worst-case bound of 1 + ½ ⌊m/(m - λ)⌋ times the optimum makespan.

[1]  H.-C. Hwang,et al.  Parallel Machines Scheduling with Machine Shutdowns , 1998 .

[2]  Dorit S. Hochbaum,et al.  Approximation Algorithms for NP-Hard Problems , 1996 .

[3]  H. Kellerer Algorithms for multiprocessor scheduling with machine release times , 1998 .

[4]  Chung-Yee Lee,et al.  Parallel machines scheduling with nonsimultaneous machine available time , 1991, Discret. Appl. Math..

[5]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[6]  Ronald L. Graham,et al.  Bounds on Multiprocessing Timing Anomalies , 1969, SIAM Journal of Applied Mathematics.

[7]  Donald K. Friesen,et al.  Tighter Bounds for the Multifit Processor Scheduling Algorithm , 1984, SIAM J. Comput..

[8]  Soo Y. Chang,et al.  The Worst-case Analysis of the MULTIFIT Algorithm for Scheduling Nonsimultaneous Parallel Machines , 1999, Discret. Appl. Math..

[9]  Edward G. Coffman,et al.  An Application of Bin-Packing to Multiprocessor Scheduling , 1978, SIAM J. Comput..

[10]  Chung-Yee Lee,et al.  Machine scheduling with an availability constraint , 1996, J. Glob. Optim..

[11]  Akihiro Hashimoto,et al.  Wire routing by optimizing channel assignment within large apertures , 1971, DAC.

[12]  M. Yue On the exact upper bound for the multifit processor scheduling algorithm , 1990 .

[13]  Chien-Hung Lin,et al.  Makespan minimization for two parallel machines with an availability constraint , 2005, Eur. J. Oper. Res..

[14]  David B. Shmoys,et al.  Using dual approximation algorithms for scheduling problems: Theoretical and practical results , 1985, 26th Annual Symposium on Foundations of Computer Science (sfcs 1985).

[15]  Chung-Yee Lee,et al.  A note on "parallel machine scheduling with non-simultaneous machine available time" , 2000, Discret. Appl. Math..