Magnetic Relaxation Detector for Microbead Labels

A compact and robust magnetic label detector for biomedical assays is implemented in 0.18-μ m CMOS. Detection relies on the magnetic relaxation signature of a microbead label for improved tolerance to environmental variations and relaxed dynamic range requirement, eliminating the need for baseline calibration and reference sensors. The device includes embedded electromagnets to eliminate external magnets and reduce power dissipation. Correlated double sampling combined with offset servo loops and magnetic field modulation, suppresses the detector offset to sub-μ T. Single 4.5-μ m magnetic beads are detected in 16 ms with a probability of error <; 0.1%.

[1]  Gil U. Lee,et al.  A biosensor based on magnetoresistance technology. , 1998, Biosensors & bioelectronics.

[2]  K. Ishibashi,et al.  A 1 V TFT-load SRAM using a two-step word-voltage method , 1992, 1992 IEEE International Solid-State Circuits Conference Digest of Technical Papers.

[3]  Hua Wang,et al.  A frequency-shift CMOS magnetic biosensor array with single-bead sensitivity and no external magnet , 2009, 2009 IEEE International Solid-State Circuits Conference - Digest of Technical Papers.

[4]  R. Dutton,et al.  Biological shot-noise and quantum-limited signal-to-noise ratio in affinity-based biosensors , 2005 .

[5]  G. Fonnum,et al.  Characterisation of Dynabeads s bymagnetization measurements and Mossbauer spectroscopy , 2005 .

[6]  B. Boser,et al.  A CMOS Hall-Effect Sensor for the Characterization and Detection of Magnetic Nanoparticles for Biomedical Applications , 2011, IEEE Transactions on Magnetics.

[7]  Shan X. Wang,et al.  Spin valve sensors for ultrasensitive detection of superparamagnetic nanoparticles for biological applications. , 2006, Sensors and actuators. A, Physical.

[8]  B. Boser,et al.  A compact Hall-effect sensor array for the detection and imaging of single magnetic beads in biomedical assays , 2011, 2011 16th International Solid-State Sensors, Actuators and Microsystems Conference.

[9]  Luke P. Lee,et al.  Innovations in optical microfluidic technologies for point-of-care diagnostics. , 2008, Lab on a chip.

[10]  F. Ludwig,et al.  Characterization of superparamagnetic nanoparticles by analyzing the magnetization and relaxation dynamics using fluxgate magnetometers , 2007 .

[11]  T. Geballe,et al.  Seebeck Effect in Silicon , 1955 .

[12]  Lutz Trahms,et al.  Description of the magnetisation decay in ferrofluids with a narrow particle size distribution , 2003 .

[13]  V. Pott,et al.  Detection of a single magnetic microbead using a miniaturized silicon Hall sensor , 2002 .

[14]  B. Boser,et al.  A novel magnetic bead bioassay platform using a microchip-based sensor for infectious disease diagnosis. , 2006, Journal of immunological methods.

[15]  R. McDermott,et al.  Ultrasensitive magnetic biosensor for homogeneous immunoassay. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[16]  G. Fonnum,et al.  Characterisation of Dynabeads® by magnetization measurements and Mössbauer spectroscopy , 2005 .

[17]  M. Geske,et al.  The Hall Effect in Silicon Circuits , 1980 .

[18]  Gabor C. Temes,et al.  Circuit techniques for reducing the effects of op-amp imperfections: autozeroing, correlated double sampling, and chopper stabilization , 1996, Proc. IEEE.