Bi-closure systems and bi-closure operators on generalized residuated lattices

[1]  E. Turunen Mathematics Behind Fuzzy Logic , 1999 .

[2]  Andrei Popescu,et al.  Non-dual fuzzy connections , 2004, Arch. Math. Log..

[3]  Giangiacomo Gerla,et al.  Graded Consequence Relations and Fuzzy Closure Operators , 1996, J. Appl. Non Class. Logics.

[4]  Giangiacomo Gerla,et al.  Closure systems and L-subalgebras , 1984, Inf. Sci..

[5]  Andrei Popescu,et al.  Non-commutative fuzzy Galois connections , 2003, Soft Comput..

[6]  Jinming Fang,et al.  L-fuzzy closure systems , 2010, Fuzzy Sets Syst..

[7]  Jinhai Li,et al.  Incomplete decision contexts: Approximate concept construction, rule acquisition and knowledge reduction , 2013, Int. J. Approx. Reason..

[8]  Radim Bělohlávek,et al.  Fuzzy Relational Systems: Foundations and Principles , 2002 .

[9]  Dexue Zhang,et al.  Concept lattices of fuzzy contexts: Formal concept analysis vs. rough set theory , 2009, Int. J. Approx. Reason..

[10]  Zhong Zheng,et al.  Rule acquisition and optimal scale selection in multi-scale formal decision contexts and their applications to smart city , 2017, Future Gener. Comput. Syst..

[11]  Giangiacomo Gerla,et al.  An Extension Principle for Closure Operators , 1996 .

[12]  Qingguo Li,et al.  Fuzzy closure systems on L—ordered sets , 2011, Math. Log. Q..

[13]  R. Belohlávek Fuzzy Closure Operators , 2001 .

[14]  Radim Bělohlávek,et al.  Lattices of Fixed Points of Fuzzy Galois Connections , 2001 .

[15]  Jinhai Li,et al.  Knowledge representation using interval-valued fuzzy formal concept lattice , 2016, Soft Comput..