LiCaAlF/sub 6/:Cr/sup 3+/: a promising new solid-state laser material

LiCaAlF/sub 6/:Cr/sup 3+/ (Cr/sup 3+/:LiCAF) exhibits an intrinsic (extrapolated maximum) slope efficiency of 67%. For comparison, the intrinsic slope efficiencies of BeAl/sub 2/O/sub 4/:Cr/sup 3+/ (alexandrite), Na/sub 3/Ga/sub 2/Li/sub 3/F/sub 12/:Cr/sup 3+/ and ScBO/sub 3/:Cr/sup 3+/ were found to be 65, 28, and 26%, respectively. The tuning range of LiCaAlF/sub 6/:Cr/sup 3+/ was determined to be at least 720-840 nm. The conventional spectroscopic properties, such as the absorption, emission, and emission lifetimes as a function of temperature, are reported as well. >

[1]  G. Huber,et al.  Laser performance of Cr3+:Gd(Sc,Ga) garnet , 1985 .

[2]  John C. Walling,et al.  Tunable alexandrite lasers , 1980 .

[3]  M. Shand,et al.  CW laser pumped emerald laser , 1984 .

[4]  P. Moulton,et al.  An investigation of the Co:MgF2laser system , 1985, IEEE Journal of Quantum Electronics.

[5]  G. Huber,et al.  Broadband emission and laser action of Cr 3+ doped zinc tungstate at 1 µm wavelength , 1985 .

[6]  H. Jenssen,et al.  Temperature dependence of the excited- state absorption of alexandrite , 1983 .

[7]  U. Brauch,et al.  KZnF3:Cr3+ — A tunable solid state NIR-laser , 1984 .

[8]  K. Knox Structures of chromium(III) fluoride , 1960 .

[9]  K. Petermann,et al.  Spectroscopic and laser properties of Cr 3+ -doped Al 2 (WO 4 ) 3 and SC 2 (WO 4 ) 3 , 1987 .

[10]  J. Caird Chromium Activated Crystals as Tunable Laser Media — What Makes Them Special? , 1986 .

[11]  W. F. Foshag New Mineral Names , 1930 .

[12]  John A. Caird,et al.  Spectroscopic, optical, and thermomechanical properties of neodymium- and chromium-doped gadolinium scandium gallium garnet , 1986 .

[13]  G. Huber,et al.  Tunable room-temperature cw laser action in Cr3+: GdScAl-garnet , 1984 .

[14]  John V. Meier,et al.  Flashlamp-pumped Cr 3+ :GSAG laser , 1986 .

[15]  K. Petermann,et al.  Laser Action in Cr-Doped Garnets and Tungstates , 1985 .

[16]  M. Dutoit,et al.  Physical properties of BeAl2O4 single crystals , 1979 .

[17]  J. F. Dillon,et al.  Crystal‐Field Spectra of d3,7 Ions. III. Spectrum of Cr3+ in Various Octahedral Crystal Fields , 1963 .

[18]  Donald F. Heller,et al.  Tunable alexandrite lasers: Development and performance , 1985 .

[19]  M. Shand,et al.  Excited-state absorption in the lasing wavelength region of alexandrite , 1982 .

[20]  Andrews,et al.  Thermal quenching of chromium photoluminescence in ordered perovskites. I. Temperature dependence of spectra and lifetimes. , 1986, Physical review. B, Condensed matter.

[21]  L. Andrews,et al.  Excited state absorption of Cr3+ in K2NaScF6 and Gd3Ga2(MO4)3, M=Ga, Al , 1986 .

[22]  L. Johnson,et al.  Phonon-Terminated Optical Masers , 1966 .

[23]  Wilke,et al.  Excited-state absorption spectra of V2+ in KMgF3 and MgF2. , 1988, Physical review. B, Condensed matter.

[24]  M. Shand Quantum efficiency of alexandrite , 1983 .

[25]  P. Moulton Spectroscopic and laser characteristics of Ti:Al2O3 , 1986 .

[26]  M. Shand,et al.  High efficiency cw laser‐pumped tunable alexandrite laser , 1983 .

[27]  A. Schawlow,et al.  Excited-state absorption in ruby, emerald, and MgO: Cr 3 + , 1975 .

[28]  H. Jenssen,et al.  Tunable-laser characteristics and spectroscopic properties of SrAlF 5 :Cr , 1986 .