A multi-objective genetic algorithm based fuzzy relational clustering for automatic microarray cancer data clustering

In the biological and biomedical research field, Microarray technology has grown into a leading approach. Microarray technology helps to monitor a large number of genes simultaneously based on different experimental conditions. This paper propose a fast elitist non-dominated sorting multi-objective genetic algorithm (NSGA-II) based fuzzy relational clustering approach for clustering microarray cancer expression dataset where it smartly creates a finer trade-off between fuzzy compactness and fuzzy separation of the clusters. Binary encoding schema is used for chromosomes while encoding the multi-objective GA. In this case it encodes the variable length numbers of clusters. Fuzzy Relational Clustering method is used to automatically assign the membership to all data point for each cluster and it produce a clusters for the given microarray cancer dataset. In the multi-objective genetic algorithm, a set of non-dominated solutions is given with optimizing objectives without dominating to any other solution. The simulation results exhibits that the intended method gives promising results in the complex, overlapped, high-dimensional microarray cancer datasets.

[1]  Sanghamitra Bandyopadhyay,et al.  A symmetry based multiobjective clustering technique for automatic evolution of clusters , 2010, Pattern Recognit..

[2]  Kalyanmoy Deb,et al.  Simulated Binary Crossover for Continuous Search Space , 1995, Complex Syst..

[3]  Aik Choon Tan,et al.  Ensemble machine learning on gene expression data for cancer classification. , 2003, Applied bioinformatics.

[4]  Dervis Karaboga,et al.  A novel clustering approach: Artificial Bee Colony (ABC) algorithm , 2011, Appl. Soft Comput..

[5]  Marcel Dettling,et al.  BagBoosting for tumor classification with gene expression data , 2004, Bioinform..

[6]  E. Lander,et al.  Gene expression correlates of clinical prostate cancer behavior. , 2002, Cancer cell.

[7]  Hoel Le Capitaine,et al.  A Family of Cluster Validity Indexes Based on a l-Order Fuzzy OR Operator , 2008, SSPR/SPR.

[8]  Andrew Skabar,et al.  Clustering Sentence-Level Text Using a Novel Fuzzy Relational Clustering Algorithm , 2013, IEEE Transactions on Knowledge and Data Engineering.

[9]  Xiyu Liu,et al.  A Novel Fuzzy Clustering Based on Particle Swarm Optimization , 2007, 2007 First IEEE International Symposium on Information Technologies and Applications in Education.

[10]  Zohar Yakhini,et al.  Clustering gene expression patterns , 1999, J. Comput. Biol..

[11]  Anil K. Jain,et al.  Data clustering: a review , 1999, CSUR.

[12]  J. Mesirov,et al.  Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. , 1999, Science.

[13]  Anthony K. H. Tung,et al.  Mining top-K covering rule groups for gene expression data , 2005, SIGMOD '05.

[14]  Ujjwal Maulik,et al.  Genetic algorithm-based clustering technique , 2000, Pattern Recognit..

[15]  U. Alon,et al.  Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[16]  Xianda Zhang,et al.  A genetic algorithm with gene rearrangement for K-means clustering , 2009, Pattern Recognit..

[17]  Sushmita Mitra,et al.  Evolutionary Rough Feature Selection in Gene Expression Data , 2007, IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews).

[18]  Hussein Hijazi,et al.  A classification framework applied to cancer gene expression profiles. , 2013, Journal of healthcare engineering.

[19]  Bernabé Dorronsoro,et al.  A Study of the Combination of Variation Operators in the NSGA-II Algorithm , 2013, CAEPIA.

[20]  Li Song,et al.  Neural network analysis of lymphoma microarray data: prognosis and diagnosis near-perfect , 2003, BMC Bioinformatics.

[21]  J. Bezdek,et al.  FCM: The fuzzy c-means clustering algorithm , 1984 .

[22]  Kalyanmoy Deb,et al.  A fast and elitist multiobjective genetic algorithm: NSGA-II , 2002, IEEE Trans. Evol. Comput..

[23]  Pierre Hansen,et al.  Bicriterion Cluster Analysis , 1980, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[24]  P. Saratchandran,et al.  Multicategory Classification Using An Extreme Learning Machine for Microarray Gene Expression Cancer Diagnosis , 2007, IEEE/ACM Transactions on Computational Biology and Bioinformatics.

[25]  Peter Bühlmann,et al.  Boosting for Tumor Classification with Gene Expression Data , 2003, Bioinform..

[26]  Hoel Le Capitaine,et al.  A Cluster-Validity Index Combining an Overlap Measure and a Separation Measure Based on Fuzzy-Aggregation Operators , 2011, IEEE Transactions on Fuzzy Systems.

[27]  Peter J. Fleming,et al.  An Overview of Evolutionary Algorithms in Multiobjective Optimization , 1995, Evolutionary Computation.

[28]  Joshua D. Knowles,et al.  An Evolutionary Approach to Multiobjective Clustering , 2007, IEEE Transactions on Evolutionary Computation.

[29]  Sung-Bae Cho,et al.  Machine Learning in DNA Microarray Analysis for Cancer Classification , 2003, APBC.

[30]  Navid Bazrkar,et al.  Task Scheduling for Computational Grids Using NSGA II with Fuzzy Variance Based Crossover , 2013 .

[31]  Kalyanmoy Deb,et al.  Muiltiobjective Optimization Using Nondominated Sorting in Genetic Algorithms , 1994, Evolutionary Computation.

[32]  Kalyanmoy Deb,et al.  On self-adaptive features in real-parameter evolutionary algorithms , 2001, IEEE Trans. Evol. Comput..

[33]  J. MacQueen Some methods for classification and analysis of multivariate observations , 1967 .

[34]  Siripen Wikaisuksakul,et al.  A multi-objective genetic algorithm with fuzzy c-means for automatic data clustering , 2014, Appl. Soft Comput..

[35]  J. Wu,et al.  A genetic fuzzy k-Modes algorithm for clustering categorical data , 2009, Expert Syst. Appl..

[36]  Elena Marchiori,et al.  Bayesian Learning with Local Support Vector Machines for Cancer Classification with Gene Expression Data , 2005, EvoWorkshops.

[37]  V. Lytvynenko Hybrid swarm negative selection algorithm for dna-microarray data classification , 2014 .

[38]  Shahista Navaz,et al.  An Evolutionary Algorithm in Grid Scheduling by multi-objective Optimization using variants of NSGA , 2012 .

[39]  M. Raghuwanshi,et al.  Survey on multiobjective evolutionary and real coded genetic algorithms , 2004 .

[40]  Hsueh-Wei Chang,et al.  A two-stage feature selection method for gene expression data. , 2009, Omics : a journal of integrative biology.

[41]  Hongyun Zhang,et al.  Gene Selection with Rough Sets for Cancer Classification , 2007, Fourth International Conference on Fuzzy Systems and Knowledge Discovery (FSKD 2007).

[42]  Bidyut Baran Chaudhuri,et al.  A novel genetic algorithm for automatic clustering , 2004, Pattern Recognit. Lett..

[43]  S. Dudoit,et al.  Comparison of Discrimination Methods for the Classification of Tumors Using Gene Expression Data , 2002 .

[44]  T. Aswani,et al.  Clustering Sentence-Level Text Using a Novel Fuzzy Relational Clustering Algorithm , 2014 .