Content Sharing among Visitors with Irregular Movement Patterns in Visiting Hotspots

Smart mobile devices have become immensely popular among the people worldwide and provide a new platform for generating and sharing contents. The centralized and hybrid architectures for content sharing require constant Internet connection, increase traffic and incur costs. To address these issues several content sharing approaches have been proposed using the decentralized architecture. Most of the proposed approaches uses patio-temporal regularity and pre-existing social relationships of the users to predict their movements and facilitate content sharing. However, there are scenarios such as visiting hotspots where regular movement patterns or established social relationships among people might not exist. Content sharing in such scenarios has not been addressed yet in literature and existing prediction based approaches are ineffectual. This study focuses on facilitating content sharing in the afore-mentioned scenarios. We take account of user interests, recommendations from online social networks, hotspot specific activities and other relevant information to construct communities which facilitate content sharing. For each community an administrator, who maintains content and member lists and render directory services, is selected based on stay probability, interest score, battery lifetime and device configuration. Simulation results show that our proposed approach attains high content hit and success rate and low latency in delivery which is nearly comparable to those proposed for scenarios with regular predictable movement patterns reported in literature.