Exactness of quadrature formulas

The standard design principle for quadrature formulas is that they should be exact for integrands of a given class, such as polynomials of a fixed degree. We show how this principle fails to predict the actual behavior in four cases: Newton–Cotes, Clenshaw–Curtis, Gauss–Legendre, and Gauss–Hermite quadrature. Three further examples are mentioned more briefly.

[1]  N. M. Temme,et al.  Fast, reliable and unrestricted iterative computation of Gauss–Hermite and Gauss–Laguerre quadratures , 2019, Numerische Mathematik.

[2]  H. Landau,et al.  Eigenvalue distribution of time and frequency limiting , 1980 .

[3]  D. Donev Prolate Spheroidal Wave Functions , 2017 .

[4]  Ignace Bogaert,et al.  Iteration-Free Computation of Gauss-Legendre Quadrature Nodes and Weights , 2014, SIAM J. Sci. Comput..

[5]  Jean-François Richard,et al.  Methods of Numerical Integration , 2000 .

[6]  Lloyd N. Trefethen,et al.  Cubature, Approximation, and Isotropy in the Hypercube , 2017, SIAM Rev..

[7]  Ronald A. DeVore,et al.  Computing a Quantity of Interest from Observational Data , 2018, Constructive Approximation.

[8]  G. Evans Practical Numerical Integration , 1993 .

[9]  D. Lubinsky A Survey of Weighted Approximation for Exponential Weights , 2007, math/0701099.

[10]  J. Mixter Fast , 2012 .

[11]  Frances Y. Kuo,et al.  High-dimensional integration: The quasi-Monte Carlo way*† , 2013, Acta Numerica.

[12]  Nicholas Hale,et al.  Fast and Accurate Computation of Gauss-Legendre and Gauss-Jacobi Quadrature Nodes and Weights , 2013, SIAM J. Sci. Comput..

[13]  H. Pollak,et al.  Prolate spheroidal wave functions, fourier analysis and uncertainty — III: The dimension of the space of essentially time- and band-limited signals , 1962 .

[14]  KosloffDan,et al.  A modified Chebyshev pseudospectral method with an O(N1) time step restriction , 1993 .

[15]  Lloyd N. Trefethen,et al.  The kink phenomenon in Fejér and Clenshaw–Curtis quadrature , 2007, Numerische Mathematik.

[16]  C. W. Clenshaw,et al.  A method for numerical integration on an automatic computer , 1960 .

[17]  Daan Huybrechs,et al.  Construction and implementation of asymptotic expansions for Laguerre-type orthogonal polynomials , 2018, ArXiv.

[18]  G. Pólya,et al.  Über die Konvergenz von Quadraturverfahren , 1933 .

[19]  Lloyd N. Trefethen,et al.  New Quadrature Formulas from Conformal Maps , 2008, SIAM J. Numer. Anal..

[20]  N. S. Bakhvalov On the optimal speed of integrating analytic functions , 1967 .

[21]  Lloyd N. Trefethen,et al.  Multivariate polynomial approximation in the hypercube , 2016, 1608.02216.

[22]  M. Aubert-Frécon,et al.  Prolate Spheroidal Wavefunctions , 1989 .

[23]  V. Totik,et al.  Moduli of smoothness , 1987 .

[24]  Carl Friedrich Gauss METHODUS NOVA INTEGRALIUM VALORES PER APPROXIMATIONEM INVENIENDI , 2011 .

[25]  Shuhuang Xiang,et al.  On the Convergence Rates of Gauss and Clenshaw-Curtis Quadrature for Functions of Limited Regularity , 2012, SIAM J. Numer. Anal..

[26]  Shuhuang Xiang,et al.  Asymptotics on Laguerre or Hermite polynomial expansions and their applications in Gauss quadrature , 2012 .

[27]  Lloyd N. Trefethen,et al.  The Exponentially Convergent Trapezoidal Rule , 2014, SIAM Rev..

[28]  D. Slepian,et al.  Prolate spheroidal wave functions, fourier analysis and uncertainty — II , 1961 .

[29]  V. Rokhlin,et al.  Prolate spheroidal wavefunctions, quadrature and interpolation , 2001 .

[30]  Rene F. Swarttouw,et al.  Orthogonal polynomials , 2020, NIST Handbook of Mathematical Functions.

[31]  K. Petras Gaussian Versus Optimal Integration of Analytic Functions , 1998 .

[32]  Lloyd N. Trefethen,et al.  Is Gauss Quadrature Better than Clenshaw-Curtis? , 2008, SIAM Rev..

[33]  Ronald Cools,et al.  Constructing cubature formulae: the science behind the art , 1997, Acta Numerica.

[34]  Prem K. Kythe,et al.  Handbook of Computational Methods for Integration , 2004 .

[35]  W. Gautschi A Survey of Gauss-Christoffel Quadrature Formulae , 1981 .

[36]  Donald J. Newman,et al.  Approximation of monomials by lower degree polynomials , 1976 .

[37]  James Clerk Maxwell,et al.  On Approximate Multiple Integration between Limits by Summation , 2011 .

[38]  Vladimir Rokhlin,et al.  On the evaluation of prolate spheroidal wave functions and associated quadrature rules , 2013, 1301.1707.

[39]  V. Rokhlin,et al.  Prolate Spheroidal Wave Functions of Order Zero: Mathematical Tools for Bandlimited Approximation , 2013 .

[40]  Lloyd N. Trefethen,et al.  Trigonometric Interpolation and Quadrature in Perturbed Points , 2016, SIAM J. Numer. Anal..

[41]  Francis Jack Smith,et al.  Error Estimation in the Clenshaw-Curtis Quadrature Formula , 1968, Comput. J..

[42]  Alex Townsend,et al.  Fast computation of Gauss quadrature nodes and weights on the whole real line , 2014, 1410.5286.

[43]  Dan Kosloff,et al.  A modified Chebyshev pseudospectral method with an O(N –1 ) time step restriction , 1993 .

[44]  J. Waldvogel Fast Construction of the Fejér and Clenshaw–Curtis Quadrature Rules , 2006 .

[45]  Helmut Brass,et al.  Quadrature Theory: The Theory of Numerical Integration on a Compact Interval , 2011 .

[46]  J. Ouspensky Sur les valeurs asymptotiques des coefficients de cotes , 1925 .

[47]  Giovanni Monegato,et al.  Truncated Gauss-Laguerre quadrature rules , 2000 .

[48]  James Bremer,et al.  A Nonlinear Optimization Procedure for Generalized Gaussian Quadratures , 2010, SIAM J. Sci. Comput..