Estimating model‐error covariances in nonlinear state‐space models using Kalman smoothing and the expectation–maximization algorithm
暂无分享,去创建一个
Thierry Chonavel | Ibrahim Hoteit | Manuel Pulido | Boujemaa Ait-El-Fquih | Pierre Tandeo | Denis Dreano | I. Hoteit | T. Chonavel | M. Pulido | P. Tandeo | B. Ait‐El‐Fquih | D. Dreano
[1] Didier Auroux,et al. Smoothing Problems in a Bayesian Framework and Their Linear Gaussian Solutions , 2012 .
[2] B. Khattatov,et al. Data assimilation : making sense of observations , 2010 .
[3] P. Houtekamer,et al. An Adaptive Ensemble Kalman Filter , 2000 .
[4] X. Deng,et al. Model Error Representation in an Operational Ensemble Kalman Filter , 2009 .
[5] Yudong Tian,et al. Modeling errors in daily precipitation measurements: Additive or multiplicative? , 2013 .
[6] François Desbouvries,et al. On Bayesian Fixed-Interval Smoothing Algorithms , 2008, IEEE Transactions on Automatic Control.
[7] G. Ueno,et al. Bayesian estimation of the observation‐error covariance matrix in ensemble‐based filters , 2016 .
[8] Guanrong Chen,et al. Kalman Filtering with Real-time Applications , 1987 .
[9] Dinh-Tuan Pham,et al. A simplified reduced order Kalman filtering and application to altimetric data assimilation in Tropical Pacific , 2002 .
[10] Dean S. Oliver,et al. THE ENSEMBLE KALMAN FILTER IN RESERVOIR ENGINEERING-A REVIEW , 2009 .
[11] R. Daley. Estimating Model-Error Covariances for Application to Atmospheric Data Assimilation , 1992 .
[12] Ibrahim Hoteit,et al. Mitigating Observation Perturbation Sampling Errors in the Stochastic EnKF , 2015 .
[13] G. Evensen,et al. Analysis Scheme in the Ensemble Kalman Filter , 1998 .
[14] Tomoyuki Higuchi,et al. Maximum likelihood estimation of error covariances in ensemble‐based filters and its application to a coupled atmosphere–ocean model , 2010 .
[15] D. Dee. On-line Estimation of Error Covariance Parameters for Atmospheric Data Assimilation , 1995 .
[16] E. Lorenz. Deterministic nonperiodic flow , 1963 .
[17] D. Rubin,et al. Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .
[18] Ibrahim Hoteit,et al. Using Low-Rank Ensemble Kalman Filters for Data Assimilation with High Dimensional Imperfect Models 1 , 2007 .
[19] I. Hoteit,et al. Review of nonlinear Kalman, ensemble and particle filtering with application to the reservoir history matching problem , 2011 .
[20] Timothy J. Robinson,et al. Sequential Monte Carlo Methods in Practice , 2003 .
[21] Matthew Newman,et al. Multiplicative Noise and Non-Gaussianity: A Paradigm for Atmospheric Regimes? , 2005 .
[22] E. Hairer,et al. Solving Ordinary Differential Equations I , 1987 .
[23] Petros G. Voulgaris,et al. On optimal ℓ∞ to ℓ∞ filtering , 1995, Autom..
[24] L. Paninski,et al. Common-input models for multiple neural spike-train data , 2007, Network.
[25] Manuel Pulido,et al. Offline parameter estimation using EnKF and maximum likelihood error covariance estimates: Application to a subgrid‐scale orography parametrization , 2013 .
[26] G. Evensen. Data Assimilation: The Ensemble Kalman Filter , 2006 .
[27] Boris Khattatov,et al. Data Assimilation and Information , 2010 .
[28] Tyrus Berry,et al. Adaptive ensemble Kalman filtering of non-linear systems , 2013 .
[29] Patrick Nima Raanes,et al. On the ensemble Rauch‐Tung‐Striebel smoother and its equivalence to the ensemble Kalman smoother , 2016 .
[30] Craig H. Bishop,et al. Adaptive sampling with the ensemble transform Kalman filter , 2001 .
[31] R. Shumway,et al. AN APPROACH TO TIME SERIES SMOOTHING AND FORECASTING USING THE EM ALGORITHM , 1982 .
[32] Nagatomo Nakamura,et al. Iterative algorithm for maximum‐likelihood estimation of the observation‐error covariance matrix for ensemble‐based filters , 2014 .
[33] C. Striebel,et al. On the maximum likelihood estimates for linear dynamic systems , 1965 .
[34] Sirish L. Shah,et al. A comparison of simultaneous state and parameter estimation schemes for a continuous fermentor reactor , 2010 .