Dynamics and Synchronization of a Novel Hyperchaotic System Without Equilibrium

A novel four-dimensional continuous-time autonomous hyperchaotic system which has no equilibrium is proposed in this paper. By starting from a third-order chaotic system and introducing a further v...

[1]  Julien Clinton Sprott,et al.  Simple Chaotic flows with One Stable equilibrium , 2013, Int. J. Bifurc. Chaos.

[2]  Guanrong Chen,et al.  Hyperchaos evolved from the generalized Lorenz equation , 2005, Int. J. Circuit Theory Appl..

[3]  Nikolay V. Kuznetsov,et al.  IWCFTA2012 Keynote Speech I - Hidden attractors in dynamical systems: From hidden oscillation in Hilbert-Kolmogorov, Aizerman and Kalman problems to hidden chaotic attractor in Chua circuits , 2012 .

[4]  S. Boccaletti,et al.  Synchronization of chaotic systems , 2001 .

[5]  L. Chua,et al.  Hyper chaos: Laboratory experiment and numerical confirmation , 1986 .

[6]  Luigi Fortuna,et al.  Emulating complex business cycles by using an electronic analogue , 2012 .

[7]  O. Rössler An equation for hyperchaos , 1979 .

[8]  Xiao-Song Yang,et al.  Hyperchaos and bifurcation in a new class of four-dimensional Hopfield neural networks , 2006, Neurocomputing.

[9]  D. Lathrop Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry, and Engineering , 2015 .

[10]  I. VagaitsevV.,et al.  Localization of hidden Chua ’ s attractors , 2022 .

[11]  E. Lorenz Deterministic nonperiodic flow , 1963 .

[12]  P. Arena,et al.  Chua's circuit can be generated by CNN cells , 1995 .

[13]  Julien Clinton Sprott,et al.  Elementary quadratic chaotic flows with no equilibria , 2013 .

[14]  Zhouchao Wei,et al.  Dynamical behaviors of a chaotic system with no equilibria , 2011 .

[15]  G. Leonov,et al.  Localization of hidden Chuaʼs attractors , 2011 .

[16]  G. Leonov,et al.  Hidden oscillations in dynamical systems , 2011 .

[17]  Julien Clinton Sprott,et al.  A Proposed Standard for the Publication of New Chaotic Systems , 2011, Int. J. Bifurc. Chaos.

[18]  L. Chua,et al.  Methods of qualitative theory in nonlinear dynamics , 1998 .

[19]  Guanrong Chen,et al.  Constructing a chaotic system with any number of equilibria , 2012, 1201.5751.

[20]  E. O. Ochola,et al.  A hyperchaotic system without equilibrium , 2012 .

[21]  Qigui Yang,et al.  Dynamical analysis of a new autonomous 3-D chaotic system only with stable equilibria , 2011 .

[22]  Xinghuo Yu,et al.  Chaos control : theory and applications , 2003 .

[23]  R. Toral,et al.  Analysis and characterization of the hyperchaos generated by a semiconductor laser subject to a delayed feedback loop , 2005, IEEE Journal of Quantum Electronics.

[24]  A. BUSCARINO,et al.  A New CNN-Based Chaotic Circuit: Experimental Results , 2009, Int. J. Bifurc. Chaos.

[25]  S. Mascolo,et al.  A system theory approach for designing cryptosystems based on hyperchaos , 1999 .

[26]  Simin Yu,et al.  Generating hyperchaotic Lü attractor via state feedback control , 2006 .

[27]  G. Leonov,et al.  Hidden attractor in smooth Chua systems , 2012 .

[28]  W. T. Rhodes,et al.  Communicating with hyperchaos: The dynamics of a DNLF emitter and recovery of transmitted information , 2003 .

[29]  Steven H. Strogatz,et al.  Nonlinear Dynamics and Chaos , 2024 .

[30]  Güémez,et al.  Modified method for synchronizing and cascading chaotic systems. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[31]  J. Sprott,et al.  Some simple chaotic flows. , 1994, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.