Kronecker product approximations for image restoration with new mean boundary conditions

[1]  Q. Chang,et al.  Acceleration methods for image restoration problem with different boundary conditions , 2008 .

[2]  Martin Hanke,et al.  Deblurring Methods Using Antireflective Boundary Conditions , 2008, SIAM J. Sci. Comput..

[3]  Dianne P. O'Leary,et al.  Deblurring Images: Matrices, Spectra and Filtering , 2006, J. Electronic Imaging.

[4]  Lisa Perrone Kronecker product approximations for image restoration with anti-reflective boundary conditions , 2006, Numer. Linear Algebra Appl..

[5]  S. Serra-Capizzano,et al.  A Note on Antireflective Boundary Conditions and Fast Deblurring Models , 2003, SIAM J. Sci. Comput..

[6]  Michael K. Ng,et al.  Kronecker Product Approximations forImage Restoration with Reflexive Boundary Conditions , 2003, SIAM J. Matrix Anal. Appl..

[7]  James G. Nagy,et al.  Optimal Kronecker Product Approximation of Block Toeplitz Matrices , 2000, SIAM J. Matrix Anal. Appl..

[8]  Raymond H. Chan,et al.  A Fast Algorithm for Deblurring Models with Neumann Boundary Conditions , 1999, SIAM J. Sci. Comput..

[9]  Aggelos K. Katsaggelos,et al.  Digital image restoration , 2012, IEEE Signal Process. Mag..

[10]  N. Pitsianis The Kronecker Product in Approximation and Fast Transform Geration , 1997 .

[11]  Per Christian Hansen,et al.  Rank-Deficient and Discrete Ill-Posed Problems , 1996 .

[12]  C. Vogel Computational Methods for Inverse Problems , 1987 .

[13]  G. Golub Matrix computations , 1983 .

[14]  W. Greub Linear Algebra , 1981 .

[15]  B. R. Hunt,et al.  Digital Image Restoration , 1977 .