Probing condensed matter physics with magnetometry based on nitrogen-vacancy centres in diamond

[1]  J. Childress,et al.  Optically detected ferromagnetic resonance in diverse ferromagnets via nitrogen vacancy centers in diamond , 2016, Journal of Applied Physics.

[2]  Ronald L. Walsworth,et al.  High-resolution magnetic resonance spectroscopy using a solid-state spin sensor , 2017, Nature.

[3]  E. Zeldov,et al.  Direct reconstruction of two-dimensional currents in thin films from magnetic field measurements , 2017, 1711.06123.

[4]  Joo-Von Kim,et al.  Real-space imaging of non-collinear antiferromagnetic order with a single-spin magnetometer , 2017, Nature.

[5]  U. Andersen,et al.  Narrow-bandwidth sensing of high-frequency fields with continuous dynamical decoupling , 2017, Nature Communications.

[6]  A. Fert,et al.  Magnetic skyrmions: advances in physics and potential applications , 2017 .

[7]  C. Degen,et al.  Quantum sensing with arbitrary frequency resolution , 2017, Science.

[8]  Michael A. McGuire,et al.  Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit , 2017, Nature.

[9]  S. Louie,et al.  Discovery of intrinsic ferromagnetism in two-dimensional van der Waals crystals , 2017, Nature.

[10]  E. Kaxiras,et al.  Magnetic resonance spectroscopy of an atomically thin material using a single-spin qubit , 2017, Science.

[11]  P. Nealey,et al.  Long-range spin wave mediated control of defect qubits in nanodiamonds , 2017, npj Quantum Information.

[12]  S. Bonetti X-ray imaging of spin currents and magnetisation dynamics at the nanoscale , 2016, Journal of physics. Condensed matter : an Institute of Physics journal.

[13]  Ronald L. Walsworth,et al.  Control and local measurement of the spin chemical potential in a magnetic insulator , 2016, Science.

[14]  Denys Makarov,et al.  Purely antiferromagnetic magnetoelectric random access memory , 2016, Nature Communications.

[15]  Amit Finkler,et al.  Nuclear quantum-assisted magnetometer. , 2016, The Review of scientific instruments.

[16]  C. Degen,et al.  Nanoscale Imaging of Current Density with a Single-Spin Magnetometer. , 2016, Nano letters.

[17]  David A. Simpson,et al.  Quantum imaging of current flow in graphene , 2016, Science Advances.

[18]  B. Myers,et al.  Double-Quantum Spin-Relaxation Limits to Coherence of Near-Surface Nitrogen-Vacancy Centers. , 2016, Physical review letters.

[19]  D. Budker,et al.  Magnetometry with Nitrogen-Vacancy Centers in Diamond , 2017 .

[20]  Subhas Chandra Mukhopadhyay,et al.  High Sensitivity Magnetometers , 2017 .

[21]  M. A. Bashir,et al.  Measuring broadband magnetic fields on the nanoscale using a hybrid quantum register. , 2017, Nature nanotechnology.

[22]  A. Fert,et al.  Emergent phenomena induced by spin–orbit coupling at surfaces and interfaces , 2016, Nature.

[23]  Ronald L. Walsworth,et al.  Imaging the Spin Texture of a Skyrmion Under Ambient Conditions Using an Atomic-Sized Sensor , 2016 .

[24]  J. Wrachtrup,et al.  Nuclear Quantum-Assisted Magnetometer on the Nanoscale , 2016 .

[25]  A quantum spectrum analyzer enhanced by a nuclear spin memory , 2016, 1610.03253.

[26]  Shaowen Chen,et al.  Electron optics with p-n junctions in ballistic graphene , 2016, Science.

[27]  M. Lukin,et al.  Magnetic noise spectroscopy as a probe of local electronic correlations in two-dimensional systems , 2016, 1608.03278.

[28]  Amit Finkler,et al.  Single spin magnetic resonance. , 2016, Journal of magnetic resonance.

[29]  Franco Nori,et al.  Hybrid Quantum Device with Nitrogen-Vacancy Centers in Diamond Coupled to Carbon Nanotubes. , 2016, Physical review letters.

[30]  J. Tetienne,et al.  Direct measurement of interfacial Dzyaloshinskii-Moriya interaction in X/CoFeB/MgO heterostructures with a scanning-NV magnetometer , 2016, 1605.07044.

[31]  Patrick Maletinsky,et al.  Fabrication of all diamond scanning probes for nanoscale magnetometry. , 2016, The Review of scientific instruments.

[32]  Takashi Taniguchi,et al.  Ballistic miniband conduction in a graphene superlattice , 2016, Science.

[33]  M. D. Lukin,et al.  Nuclear magnetic resonance detection and spectroscopy of single proteins using quantum logic , 2016, Science.

[34]  Ronald L. Walsworth,et al.  Optical magnetic detection of single-neuron action potentials using quantum defects in diamond , 2016, Proceedings of the National Academy of Sciences.

[35]  A. Locatelli,et al.  Room-temperature chiral magnetic skyrmions in ultrathin magnetic nanostructures. , 2016, Nature nanotechnology.

[36]  Richelle M. Teeling-Smith,et al.  Spatially resolved detection of complex ferromagnetic dynamics using optically detected nitrogen-vacancy spins , 2015, 1512.05418.

[37]  P. Bertet,et al.  Competition between electric field and magnetic field noise in the decoherence of a single spin in diamond , 2015, 1511.08175.

[38]  E Neu,et al.  Quantitative nanoscale vortex imaging using a cryogenic quantum magnetometer. , 2015, Nature nanotechnology.

[39]  J. Berezovsky,et al.  Fast nanoscale addressability of nitrogen-vacancy spins via coupling to a dynamic ferromagnetic vortex , 2015, Nature Communications.

[40]  Ania C. Bleszynski Jayich,et al.  Scanned probe imaging of nanoscale magnetism at cryogenic temperatures with a single-spin quantum sensor. , 2015, Nature nanotechnology.

[41]  K. Novoselov,et al.  Negative local resistance caused by viscous electron backflow in graphene , 2015, Science.

[42]  L. Hollenberg,et al.  Scanning Nanospin Ensemble Microscope for Nanoscale Magnetic and Thermal Imaging. , 2015, Nano letters.

[43]  M. Lukin,et al.  NMR technique for determining the depth of shallow nitrogen-vacancy centers in diamond , 2015, 1508.04191.

[44]  R. Scholten,et al.  Magneto-optical imaging of thin magnetic films using spins in diamond , 2015, Scientific Reports.

[45]  Y. Tokura,et al.  Local dynamics of topological magnetic defects in the itinerant helimagnet FeGe , 2015, Nature Communications.

[46]  J. White,et al.  Néel-type skyrmion lattice with confined orientation in the polar magnetic semiconductor GaV4S8. , 2015, Nature materials.

[47]  N. Tamura,et al.  Mobile metallic domain walls in an all-in-all-out magnetic insulator , 2015, Science.

[48]  M. Ganzhorn,et al.  Nanoscale microwave imaging with a single electron spin in diamond , 2015, 1508.02719.

[49]  Antoine Nowodzinski,et al.  Nitrogen-Vacancy centers in diamond for current imaging at the redistributive layer level of Integrated Circuits , 2015, Microelectron. Reliab..

[50]  T. Ohshima,et al.  Single spin optically detected magnetic resonance with 60-90 GHz (E-band) microwave resonators. , 2015, The Review of scientific instruments.

[51]  M. Lukin,et al.  Probing Johnson noise and ballistic transport in normal metals with a single-spin qubit , 2015, Science.

[52]  J. Tetienne,et al.  Measuring the Magnetic Moment Density in Patterned Ultrathin Ferromagnets with Submicrometer Resolution , 2015, 1503.00705.

[53]  J. White,et al.  N\'eel-type Skyrmion Lattice with Confined Orientation in the Polar Magnetic Semiconductor GaV$_4$S$_8$ , 2015, 1502.08049.

[54]  Susumu Takahashi,et al.  High-frequency and high-field optically detected magnetic resonance of nitrogen-vacancy centers in diamond , 2015, 1502.03420.

[55]  J Wrachtrup,et al.  Nanoscale nuclear magnetic imaging with chemical contrast. , 2015, Nature nanotechnology.

[56]  T. Wolf,et al.  Subpicotesla Diamond Magnetometry , 2014, 1411.6553.

[57]  M. Huber,et al.  Probing dynamics and pinning of single vortices in superconductors at nanometer scales , 2014, Scientific Reports.

[58]  A. Yacoby,et al.  Nanometre-scale probing of spin waves using single-electron spins , 2014, Nature Communications.

[59]  J. Tetienne,et al.  The nature of domain walls in ultrathin ferromagnets revealed by scanning nanomagnetometry , 2014, Nature Communications.

[60]  M. Lukin,et al.  Efficient readout of a single spin state in diamond via spin-to-charge conversion. , 2014, Physical review letters.

[61]  P Cappellaro,et al.  Fourier magnetic imaging with nanoscale resolution and compressed sensing speed-up using electronic spins in diamond. , 2014, Nature nanotechnology.

[62]  F. Reinhard,et al.  Nanoengineered diamond waveguide as a robust bright platform for nanomagnetometry using shallow nitrogen vacancy centers. , 2014, Nano letters.

[63]  M. Brandt,et al.  Ultrafast electronic readout of diamond nitrogen-vacancy centres coupled to graphene. , 2014, Nature nanotechnology.

[64]  C. Rettner,et al.  Proton magnetic resonance imaging using a nitrogen-vacancy spin sensor. , 2014, Nature nanotechnology.

[65]  M. Lukin,et al.  Nanoscale NMR spectroscopy and imaging of multiple nuclear species. , 2014, Nature nanotechnology.

[66]  N. Chisholm,et al.  Magnetic resonance detection of individual proton spins using quantum reporters. , 2014, Physical review letters.

[67]  Ronald L. Walsworth,et al.  Atom-like crystal defects: From quantum computers to biological sensors , 2014 .

[68]  B. Myers,et al.  Two-Dimensional Nanoscale Imaging of Gadolinium Spins via Scanning Probe Relaxometry with a Single Spin in Diamond , 2014, 1409.2422.

[69]  Wooyoung Hong,et al.  High quality-factor optical nanocavities in bulk single-crystal diamond , 2014, Nature Communications.

[70]  J. Meijer,et al.  Nuclear magnetic resonance spectroscopy with single spin sensitivity , 2014, Nature Communications.

[71]  T. Kaldewey,et al.  Low-loss broadband antenna for efficient photon collection from a coherent spin in diamond , 2014, 1408.4117.

[72]  Bernhard Keimer,et al.  Neutron scattering from quantum condensed matter. , 2014, Nature materials.

[73]  B Bryant,et al.  Imaging of spin waves in atomically designed nanomagnets. , 2014, Nature materials.

[74]  J. Tetienne,et al.  Nanoscale imaging and control of domain-wall hopping with a nitrogen-vacancy center microscope , 2014, Science.

[75]  R. Schirhagl,et al.  Nitrogen-vacancy centers in diamond: nanoscale sensors for physics and biology. , 2014, Annual review of physical chemistry.

[76]  F. Delgado,et al.  Spin wave imaging in atomically designed nanomagnets , 2014, 1403.5890.

[77]  Richelle M. Teeling-Smith,et al.  Off-resonant manipulation of spins in diamond via precessing magnetization of a proximal ferromagnet , 2014, 1403.0656.

[78]  H. Arami,et al.  Room-temperature detection of single 20 nm super-paramagnetic nanoparticles with an imaging magnetometer , 2014, 1403.0866.

[79]  F. Dolde,et al.  A Viewpoint on: Nanoscale Detection of a Single Fundamental Charge in Ambient Conditions Using the NV Center in Diamond , 2014 .

[80]  A. Yacoby,et al.  Subnanometre resolution in three-dimensional magnetic resonance imaging of individual dark spins. , 2014, Nature nanotechnology.

[81]  D. Budker,et al.  Cavity-enhanced room-temperature magnetometry using absorption by nitrogen-vacancy centers in diamond. , 2014, Physical review letters.

[82]  J. Tetienne,et al.  Magnetometry with nitrogen-vacancy defects in diamond , 2013, Reports on progress in physics. Physical Society.

[83]  J. Tetienne,et al.  Nitrogen-vacancy-center imaging of bubble domains in a 6-Å film of cobalt with perpendicular magnetization , 2013, 1309.2415.

[84]  D. Budker,et al.  Diamond Magnetometry of Superconducting Thin Films , 2013, 1308.2689.

[85]  Y. Tokura,et al.  Topological properties and dynamics of magnetic skyrmions. , 2013, Nature nanotechnology.

[86]  Y. Tokura,et al.  Towards control of the size and helicity of skyrmions in helimagnetic alloys by spin-orbit coupling. , 2013, Nature nanotechnology.

[87]  Eli Zeldov,et al.  A scanning superconducting quantum interference device with single electron spin sensitivity. , 2013, Nature nanotechnology.

[88]  SUPARNA DUTTASINHA,et al.  Van der Waals heterostructures , 2013, Nature.

[89]  A. Yacoby,et al.  Local spin susceptibilities of low-dimensional electron systems , 2013, 1303.1151.

[90]  J. Tetienne,et al.  Stray-field imaging of magnetic vortices with a single diamond spin , 2013, Nature Communications.

[91]  D. Loss,et al.  Long-Distance Entanglement of Spin Qubits via Ferromagnet , 2013, 1302.4017.

[92]  Neil B. Manson,et al.  The nitrogen-vacancy colour centre in diamond , 2013, 1302.3288.

[93]  J. Meijer,et al.  Nuclear Magnetic Resonance Spectroscopy on a (5-Nanometer)3 Sample Volume , 2013, Science.

[94]  D. Rugar,et al.  Nanoscale Nuclear Magnetic Resonance with a Nitrogen-Vacancy Spin Sensor , 2013, Science.

[95]  Ronald L. Walsworth,et al.  Nanoscale magnetometry with NV centers in diamond , 2013 .

[96]  F. Reinhard,et al.  Single defect center scanning near-field optical microscopy on graphene. , 2013, Nano letters.

[97]  L. Molenkamp,et al.  Imaging currents in HgTe quantum wells in the quantum spin Hall regime. , 2012, Nature materials.

[98]  D. Apalkov,et al.  Matching domain-wall configuration and spin-orbit torques for efficient domain-wall motion , 2012, 1210.3049.

[99]  M. D. Lukin,et al.  Nanoscale magnetic imaging of a single electron spin under ambient conditions , 2012, Nature Physics.

[100]  Yize Jin,et al.  Topological insulators , 2014, Topology in Condensed Matter.

[101]  T. Debuisschert,et al.  Magnetic-field-dependent photodynamics of single NV defects in diamond: an application to qualitative all-optical magnetic imaging , 2012, 1206.1201.

[102]  M. Lukin,et al.  A robust scanning diamond sensor for nanoscale imaging with single nitrogen-vacancy centres. , 2011, Nature nanotechnology.

[103]  H. Hwang,et al.  BASIC NOTIONS , 2022 .

[104]  M. Plenio,et al.  Robust dynamical decoupling with concatenated continuous driving , 2011, 1111.0930.

[105]  B. V. van Wees,et al.  Spin caloritronics. , 2011, Nature materials.

[106]  J. Tetienne,et al.  Nanoscale magnetic field mapping with a single spin scanning probe magnetometer , 2011, 1108.4438.

[107]  D. Cory,et al.  Noise spectroscopy through dynamical decoupling with a superconducting flux qubit , 2011 .

[108]  T. Hayward,et al.  A simple model for calculating magnetic nanowire domain wall fringing fields , 2011, 1104.2249.

[109]  R. Hanson,et al.  Single-spin magnetometry with multipulse sensing sequences. , 2010, Physical review letters.

[110]  I. Gerhardt,et al.  Monolithic diamond optics for single photon detection. , 2010, Applied physics letters.

[111]  R Hanson,et al.  Universal Dynamical Decoupling of a Single Solid-State Spin from a Spin Bath , 2010, Science.

[112]  G. Xiang,et al.  Nanoscale scanning probe ferromagnetic resonance imaging using localized modes , 2010, Nature.

[113]  C. Kane,et al.  Topological Insulators , 2019, Electromagnetic Anisotropy and Bianisotropy.

[114]  D Budker,et al.  Temperature dependence of the nitrogen-vacancy magnetic resonance in diamond. , 2009, Physical review letters.

[115]  J. Wrachtrup,et al.  Universal enhancement of the optical readout fidelity of single electron spins at nitrogen-vacancy c , 2009, 0909.2783.

[116]  J. S. Hodges,et al.  Repetitive Readout of a Single Electronic Spin via Quantum Logic with Nuclear Spin Ancillae , 2009, Science.

[117]  E. A. Lima,et al.  Obtaining vector magnetic field maps from single-component measurements of geological samples , 2009 .

[118]  J. Mésot,et al.  Neutron Scattering in Condensed Matter Physics , 2009 .

[119]  Michael J. Biercuk,et al.  Optimized dynamical decoupling in a model quantum memory , 2008, Nature.

[120]  P. Kim,et al.  Quantum interference and Klein tunnelling in graphene heterojunctions , 2008, Nature Physics.

[121]  M. Fanciulli Electron Spin Resonance and Related Phenomena in Low-Dimensional Structures , 2009 .

[122]  Alfred Leitenstorfer,et al.  Nanoscale imaging magnetometry with diamond spins under ambient conditions , 2008, Nature.

[123]  Jacob M. Taylor,et al.  Nanoscale magnetic sensing with an individual electronic spin in diamond , 2008, Nature.

[124]  Jacob M. Taylor,et al.  High-sensitivity diamond magnetometer with nanoscale resolution , 2008, 0805.1367.

[125]  C. Degen,et al.  Scanning magnetic field microscope with a diamond single-spin sensor , 2008, 0805.1215.

[126]  S. Parkin,et al.  Magnetic Domain-Wall Racetrack Memory , 2008, Science.

[127]  Geoffrey S. D. Beach,et al.  Current-induced domain wall motion , 2008 .

[128]  R. Walstedt The NMR Probe of High-Tc Materials , 2008 .

[129]  R. D. Sousa Electron spin as a spectrometer of nuclear spin noise and other fluctuations , 2006, cond-mat/0610716.

[130]  Faming Liang,et al.  Statistical and Computational Inverse Problems , 2006, Technometrics.

[131]  D. Pines,et al.  The pseudogap: friend or foe of high T c ? , 2005, cond-mat/0507031.

[132]  Giovanni Vignale,et al.  Quantum Theory of the Electron Liquid , 2005 .

[133]  S. Bending,et al.  Local magnetic probes of superconductors , 1999 .

[134]  S. Blundell Spin-polarized muons in condensed matter physics , 1999, cond-mat/0207699.

[135]  M. Farle Ferromagnetic resonance of ultrathin metallic layers , 1998 .

[136]  J. Wrachtrup,et al.  Scanning confocal optical microscopy and magnetic resonance on single defect centers , 1997 .

[137]  R. Blakely Potential theory in gravity and magnetic applications , 1996 .

[138]  J. J. Sakurai,et al.  Advanced Quantum Mechanics , 1969 .

[139]  A. Slavin,et al.  Theory of dipole-exchange spin wave spectrum for ferromagnetic films with mixed exchange boundary conditions , 1986 .

[140]  G. Bacon Introduction to the Theory of Thermal Neutron Scattering , 1979 .

[141]  J. R. Clem THEORY OF FLUX-FLOW NOISE VOLTAGE IN SUPERCONDUCTORS. , 1970 .

[142]  D. A. Dunnett Classical Electrodynamics , 2020, Nature.

[143]  R. Kubo The fluctuation-dissipation theorem , 1966 .

[144]  J. Pearl,et al.  CURRENT DISTRIBUTION IN SUPERCONDUCTING FILMS CARRYING QUANTIZED FLUXOIDS , 1964 .

[145]  T. Moriya Anisotropic Superexchange Interaction and Weak Ferromagnetism , 1960 .