Optical microrheology using rotating laser-trapped particles.

We demonstrate an optical system that can apply and accurately measure the torque exerted by the trapping beam on a rotating birefringent probe particle. This allows the viscosity and surface effects within liquid media to be measured quantitatively on a micron-size scale using a trapped rotating spherical probe particle. We use the system to measure the viscosity inside a prototype cellular structure.

[1]  M E Friese,et al.  Optical torque controlled by elliptical polarization. , 1998, Optics letters.

[2]  Eiji Higurashi,et al.  Optically induced rotation of anisotropic micro‐objects fabricated by surface micromachining , 1994 .

[3]  W. M. Haynes CRC Handbook of Chemistry and Physics , 1990 .

[4]  T. N. Stevenson,et al.  Fluid Mechanics , 2021, Nature.

[5]  H. Rubinsztein-Dunlop,et al.  Optical application and measurement of torque on microparticles of isotropic nonabsorbing material , 2003, physics/0309122.

[6]  Renshi Sawada,et al.  Optically induced angular alignment of trapped birefringent micro-objects by linearly polarized light , 1999 .

[7]  Yoshimasa Kawata,et al.  Application of laser-trapping technique for measuring the three-dimensional distribution of viscosity , 2002 .

[8]  R. A. Beth Mechanical Detection and Measurement of the Angular Momentum of Light , 1936 .

[9]  Miles J Padgett,et al.  Rotational control within optical tweezers by use of a rotating aperture. , 2002, Optics letters.

[10]  H. Rubinsztein-Dunlop,et al.  erratum: Optical alignment and spinning of laser-trapped microscopic particles , 1998, Nature.

[11]  H. Rubinsztein-Dunlop,et al.  Optical angular-momentum transfer to trapped absorbing particles. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[12]  Faraday Discuss , 1985 .

[13]  Pal Ormos,et al.  Orientation of flat particles in optical tweezers by linearly polarized light. , 2003, Optics express.

[14]  Z Cheng,et al.  Rotational diffusion microrheology. , 2003, Physical review letters.

[15]  P. Chaikin,et al.  Light streak tracking of optically trapped thin microdisks. , 2002, Physical review letters.

[16]  Andrew G. Glen,et al.  APPL , 2001 .

[17]  H. Rubinsztein-Dunlop,et al.  Optical measurement of microscopic torques , 2003 .

[18]  Enrico Santamato,et al.  Optical angular momentum transfer to transparent isotropic particles using laser beam carrying zero average angular momentum. , 2002, Optics express.

[19]  S. Granick,et al.  Micro- and nanorheology , 2001 .

[20]  M W Berns,et al.  Physiological monitoring of optically trapped cells: assessing the effects of confinement by 1064-nm laser tweezers using microfluorometry. , 1996, Biophysical journal.

[21]  T. Walker,et al.  Light torque nanocontrol, nanomotors and nanorockers. , 2002, Optics express.

[22]  Pál Ormos,et al.  Complex micromachines produced and driven by light , 2001, CLEO 2002.

[23]  T C Lubensky,et al.  Rheological microscopy: local mechanical properties from microrheology. , 2003, Physical review letters.

[24]  W Sibbett,et al.  Controlled Rotation of Optically Trapped Microscopic Particles , 2001, Science.

[25]  P. Bartlett,et al.  Colloidal dynamics in polymer solutions: optical two-point microrheology measurements. , 2002, Faraday discussions.

[26]  E. M. Lifshitz,et al.  Course in Theoretical Physics , 2013 .

[27]  H. Rubinsztein-Dunlop,et al.  Optical alignment and spinning of laser-trapped microscopic particles , 1998, Nature.

[28]  H. Rubinsztein-Dunlop,et al.  Orientation of biological cells using plane-polarized Gaussian beam optical tweezers , 2003, physics/0308105.

[29]  F. Durst,et al.  Stokes flow caused by the motion of a rigid sphere close to a viscous interface , 1998 .